离散时间傅里叶变换

回顾离散时间周期信号傅里叶级数

x[n]=k=<N>akejk2πNnak=ak±mN=1Nn=<N>x[n]ejk2πNn{\boxed{x[n] = \sum_{k=<N>} a_ke^{jk\frac{2\pi}{N}n} \qquad a_k = a_{k\pm mN} = \frac 1N \sum_{n=<N>}x[n]e^{-jk\frac{2\pi}{N}n}}}

离散时间非周期信号傅里叶变换

考虑某一序列x[n]x[n]具有有限持续期,即在N1nN2-N_1 \leq n \leq N_2以外x[n]=0x[n]=0。这个非周期信号可以构成一个周期信号x~[n]\tilde x[n]x[n]x[n]是它的一个周期。
x~[n]=k=<N>akejk(2π/N)nak=1Nn=<N>x~[n]ejk(2π/N)n=1Nn=x[n]ejk(2π/N)n\tilde x[n] = \sum_{k=<N>} a_k e^{jk(2\pi / N)n} a_k = \frac 1N \sum_{n = <N>} \tilde x[n]e^{-jk(2\pi/N)n} = \frac 1N \sum_{n=\infty} x[n]e^{-jk(2\pi/N)n}
定义X(ejw)=n=x[n]ejwnX(e^{jw}) = \sum_{n=\infty}x[n]e^{-jwn}
其中ak=1NX(ejkw0)a_k = \frac 1N X(e^{jkw_0})
x~[n]=k=<N>1NX(ejkw0)ejkw0n=12πk=<N>X(ejkw0)ejkw0nw0\tilde x[n] = \sum_{k=<N>} \frac 1N X(e^{jkw_0})e^{jkw_0n} = \frac 1{2\pi} \sum_{k=<N>} X(e^{jkw_0})e^{jkw_0n}w_0
N>N->\inftyx~[n]>x[n]\tilde x[n]-> x[n]w0>0w_0->0
x[n]=12π2πX(ejw)ejwndwx[n] = \frac 1{2\pi} \int_{2\pi}X(e^{jw})e^{jwn}dw
x[n]=12π2πX(ejw)ejwndw(ejw)=n=x[n]ejwn{\boxed{x[n] = \frac 1{2\pi} \int_{2\pi}X(e^{jw})e^{jwn}dw \qquad (e^{jw}) = \sum_{n=\infty}x[n]e^{-jwn}}}

例子

  • 考虑信号x[n]=anu[n],a<1x[n] = a^nu[n], |a|<1的傅里叶变换
    X(ejw)=0(aejw)n=11aejwX(e^{jw}) = \sum_0^{\infty} (ae^{-jw})^n=\frac 1{1-ae^{-jw}}
    在这里插入图片描述
  • 考虑方波信号x[n]={ 1nN10otherx[n] = \left\{ \begin{aligned}\ 1 && |n| \leq N_1\\ 0 && other\\ \end{aligned} \right.的傅里叶变换
    X(ejw)=n=N1N1ejwn=sinw(N1+1/2)w/2X(e^{jw}) = \sum_{n=-N_1}^{N_1}e^{-jwn} = \frac{sinw(N_1+1/2)}{w/2}
    在这里插入图片描述
发布了11 篇原创文章 · 获赞 0 · 访问量 123
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览