连续时间周期信号傅里叶级数

谐波

谐波即一系列具有公共周期T0T_0的波。
要使一个复指数信号ejwte^{jwt}成为具有周期T0T_0的谐波,
ejw(t+T0)=ejwte^{jw(t+T_0)}=e^{jwt}
ejwT0=1e^{jwT_0}=1
wT0=2πk,k=0,±1,...wT_0=2\pi k, k=0, \pm1, ...
由于基波频率w0=2πT0w_0=\frac {2\pi}{T_0},所以w=kw0w=kw_0
一个成谐波关系的复指数信号的集合就是一组基波频率是w0w_0的整数倍的复指数信号。

周期信号

用成谐波关系的三角函数和来描述周期性过程可以追溯到古巴比伦时代,当时人们利用这一想法来预测天体运动。1807年,傅里叶在研究热的传播和扩散的时候发现,成谐波关系的正弦函数级数非常有用,并断言任何周期信号都可以用这样都级数来表示。这一断言后来由Dirichlet严格证明。
函数y(t)=sin(πt)+sin(2πt)+sin(3πt)+sin(4πt)y(t)=sin(\pi t)+sin(2\pi t)+sin(3\pi t) + sin(4\pi t)的波形如下:
在这里插入图片描述

连续周期信号傅里叶级数

假设一个周期为T0T_0,频率为w0w_0的连续信号x(t)x(t)由一系列的谐波组成,
x(t)=k=+akejkw0t,k=0,±1,...x(t)=\sum_{k=-\infty}^{+\infty}a_ke^{jkw_0t}, k = 0, \pm 1, ...
两边各乘ejnw0te^{-jnw_0t},并在一个周期内积分,可得
0Tx(t)ejnw0tdt=0Tk=+akejkw0tejnw0tdt=k=+ak[0Tej(kn)w0tdt]\int_0^T x(t)e^{-jnw_0t}dt = \int_0^T \sum_{k=-\infty}^{+\infty}a_ke^{jkw_0t}e^{-jnw_0t}dt=\sum_{k=-\infty}^{+\infty}a_k[\int_0^Te^{j(k-n)w_0t}dt]
右式中,0Tej(kn)w0t=0Tcos(kn)w0tdt+j0Tsin(kn)w0tdt={Tn=k0nk\int_0^Te^{j(k-n)w_0t}=\int_0^T cos(k-n)w_0tdt + j\int_0^T sin(k-n)w_0tdt=\left\{ \begin{aligned} T && n=k \\ 0 && n\neq k \\ \end{aligned} \right.
所以ak=1TTx(t)ejkw0tdta_k=\frac 1T \int_T x(t)e^{-jkw_0t}dt

x(t)=k=+akejkw0t,k=0,±1,...ak=1TTx(t)ejkw0tdt{\boxed{ x(t)=\sum_{k=-\infty}^{+\infty}a_ke^{jkw_0t}, k = 0, \pm 1, ...\qquad a_k=\frac 1T \int_T x(t)e^{-jkw_0t}dt }}

  • 例1:求信号x(t)=cos(w0t)x(t)=cos(w_0t)的傅里叶级数
    直接由欧拉关系可得:
    cos(w0t)=12(ejwot+ejw0t)cos(w_0t)=\frac 12 (e^{jw_ot}+e^{-jw_0t}),所以a1=a1=12a_1= a_{-1}=\frac 12
  • 例2:求周期为T的方波信号的傅里叶级数
    x(t)={1kTT1<a<kT+T10otherx(t) = \left\{ \begin{aligned} 1 && kT - T1 < |a| < kT + T1\\ 0 && other\\ \end{aligned} \right.
    a0=1TT1T1dt=2T1Ta_0 = \frac 1T \int_{-T1}^{T1}dt = \frac {2T1}T
    ak=sin(kw0T1)kπ,k0a_k = \frac {sin(kw_0T1)}{k\pi}, k\neq0
    在这里插入图片描述

收敛

Dirichlet条件:

  • 条件1:在任何周期内,x(t)x(t)必须绝对可积,这保证了aka_k是有限值;
  • 条件2:在任意有限区间内,x(t)x(t)的最大值和最小值的数目有限;
  • 条件3:在任意有限区间内,只有有限个不连续点,在不连续点上函数是有限值。
发布了11 篇原创文章 · 获赞 0 · 访问量 131
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览