ABNE: An Attention-Based Network Embedding for User Alignment Across Social Networks
摘要:在本文中,我们提出了一个基于注意力的网络嵌入模型,利用社会结构来实现用户对齐。
利用学习到的权值和嵌入在这两个组件之间的传递,构造了一个统一的用户嵌入和对齐模型。(和IONE一样).使用了注意力机制。
提出了一种mask-graph attention 机制,该机制通过对预对齐用户对的监督来学习对齐任务驱动的注意权值,嵌入算法通过显式建模跟踪向量空间和跟踪向量空间之间的加权贡献概率来学习公共向量空间。使用SGD和负采样。
有强烈相似关注好友倾向的邻居对其关注者/关注者的贡献应该较高,反之亦然。这是一个具有挑战性的工作,手动确定邻居的重要性,因为追随相同的朋友的行为可能受到几个内部或外部因素的影响。
贡献:
masked graph attention mechanism
2Introduction
例如,关联矩阵[11]或超图[12]、[13]通常用于对用户信息进行建模,然后设计降维算法,为每个用户学习一个公共的连续向量。在此基础上,采用相似度计算方法进行对齐。
3 Model
MASKED GRAPH ATTENTION MECHANISM
followee:关注者
follower:追随者
学习注意力机制
根据用户的向量计算两个用户之间的注意力权重。
使用:
损失函数定义:
EMBEDDING MODEL WITH ATTENTION WEIGHTS
input vector:从父亲的node vector得到的向量
output vector:从儿子的node vector得到的向量
计算父亲的output vector对儿子(父亲对儿子的贡献除所有父亲对儿子的贡献)的input vector的贡献概率值
计算儿子对父亲(儿子对父亲的贡献除于所有儿子对父亲的贡献)的output vector的贡献概率值
上面两个公式的目的是学习用户的network embeddiing
定义的损失函数
上述损失函数的目的是确保当两个节点有相似的内容节点(例如父亲或者儿子集合相似),向量接近。
对齐的损失函数是
如果两个在X和Y中的用户是属于同一个人,直接交叉替代,计算损失函数
如果X中的ui和Y中的um是同一个人,计算ui在X的父子对un的影响,同样,计算un在Y中的父子对ui的影响。