《labuladong的算法小抄》笔记
第零章 必读系列
计算机的递归思维,自顶向下,逐步求精,反向求解。我们旧文写了很多动态规划相关的题目,基本都是先写自顶向下的递归解法,然后改写成自底向上的迭代解法,因为递归思路清晰嘛。
学习算法和刷题的框架思维
一、数据结构的存储方式
最基本的:
- 数组(顺序存储)
- 链表(链式存储)
更多衍生,散列表、栈、队列、堆、树、图;都是在链表或者数组上的特殊操作,API 不同而已。
【队列】、【栈】这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。
【图】的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。
【散列表】就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。
【树】,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题。
底层存储无非数组或者链表,二者的优缺点如下:
- 【数组】由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配