目录
单帧红外小目标数据集 | Single-frame InfraRed Small Target (SIRST) Benchmark
单帧红外小目标数据集 | Single-frame InfraRed Small Target (SIRST) Benchmark
南航戴一冕的文章中提出了一个用于红外小目标检测的单帧数据集 "Asymmetric Contextual Modulation for Infrared Small Target Detection" https://arxiv.org/abs/2009.14530
“Asymmetric Contextual Modulation for Infrared Small Target Detection”文中首先提供了一个具有高质量标注的开放数据集来推进红外小目标领域的研究。
1 数据集描述
SIRST
- 公开的单帧数据集。仅对数百个序列,抽取序列中最具代表性的图片。为了避免训练集、验证集和测试集之间的重叠,我们在每个红外序列中只选取一幅代表图像。每个目标都是通过观察它的移动序列来确认的,以确保它是一个真实目标,而不是像素级的脉冲噪声。
- 图像目标有5种标注形式。适应不同检测模型的形式。支持不同的任务:图像分类、实例分割、边界框回归、语义分割和实例点识别
- 427张红外图像、480个目标(由于红外序列的缺乏,SIRST除了短波和中波长的红外图像外,还包括950 nm波长的红外图像)。
- 50%训练集 20%验证集 30%测试集。许多目标都非常模糊,并且隐藏在复杂的背景中。即使对人类来说,检测它们也不是一项容易的任务,这需要在整体场景的下具有高级语义,并进行集中搜索。
IRST是专门为单帧红外小目标检测而构建的数据集,其中的图像是从数百个不同场景的红外序列中选取的。https://github.com/YimianDai/sirst/blob/master/gallery.png
The bounding box and semantic segmentation annotations are available now. The rest annotation forms will come soon.
手动标记为五种标注形式。边界框和语义分割标注现在可用。其余的标注表格将很快发布。(还有其他同类型数据集[31],但SIRST是数据量最多的)
(a) 类别标签 (b)实例分割 (c)边界框 (d)语义分割 (e)实例发现
数据集统计性质
- 目标个数分布。约90%图片中只有一个目标,约10%图片有