2021-03-29 单帧红外小目标数据集 | SIRST

目录

单帧红外小目标数据集 | Single-frame InfraRed Small Target (SIRST) Benchmark

1 数据集描述

  SIRST

  数据集统计性质

           新的评价指标nIoU

2 红外小目标检测

      模型驱动方法有优缺点

      基于深度学习(数据驱动)

               提出非调制对称上下文机制(ACM)

 


单帧红外小目标数据集 | Single-frame InfraRed Small Target (SIRST) Benchmark

南航戴一冕的文章中提出了一个用于红外小目标检测的单帧数据集 "Asymmetric Contextual Modulation for Infrared Small Target Detection" https://arxiv.org/abs/2009.14530

“Asymmetric Contextual Modulation for Infrared Small Target Detection”文中首先提供了一个具有高质量标注的开放数据集来推进红外小目标领域的研究。

1 数据集描述

  SIRST

  • 公开的单帧数据集。仅对数百个序列,抽取序列中最具代表性的图片。为了避免训练集、验证集和测试集之间的重叠,我们在每个红外序列中只选取一幅代表图像。每个目标都是通过观察它的移动序列来确认的,以确保它是一个真实目标,而不是像素级的脉冲噪声
  • 图像目标有5种标注形式。适应不同检测模型的形式。支持不同的任务:图像分类、实例分割、边界框回归、语义分割和实例点识别
  • 427张红外图像、480个目标(由于红外序列的缺乏,SIRST除了短波和中波长的红外图像外,还包括950 nm波长的红外图像)。
  • 50%训练集 20%验证集 30%测试集。许多目标都非常模糊,并且隐藏在复杂的背景中。即使对人类来说,检测它们也不是一项容易的任务,这需要在整体场景的下具有高级语义,并进行集中搜索。

IRST是专门为单帧红外小目标检测而构建的数据集,其中的图像是从数百个不同场景的红外序列中选取的。https://github.com/YimianDai/sirst/blob/master/gallery.png

The bounding box and semantic segmentation annotations are available now. The rest annotation forms will come soon.

手动标记为五种标注形式。边界框和语义分割标注现在可用。其余的标注表格将很快发布。(还有其他同类型数据集[31],但SIRST是数据量最多的)

                                                                              (a) 类别标签  (b)实例分割 (c)边界框 (d)语义分割 (e)实例发现

 

  数据集统计性质

  • 目标个数分布。约90%图片中只有一个目标,约10%图片有
### MFIRST 和 SIRST 红外数据集概述 MFIRST (Mid-Wave Infrared Scene Project) 是一个用于模拟和分析中波红外场景的数据集[^1]。该数据集包含了多种环境条件下的红外图像,旨在支持目标检测、识别以及跟踪算法的研究和发展。 SIRST (Shortwave InfraRed Search and Track) 数据集则专注于短波红外光谱范围内的成像技术研究[^2]。此集合提供了不同天气状况下获取的目标物体热辐射特性信息,对于开发先进的光电对抗措施具有重要意义。 #### 下载指南 为了获得这些宝贵资源,研究人员通常需要访问特定机构或组织提供的官方平台来完成注册并遵循其发布的下载流程说明文档。部分公开可用链接可能存在于学术论文附录或是相关会议网站上。 #### 使用方法简介 当处理来自上述两个源的文件时,建议采用如下方式: - **预处理阶段**:确保所有必要的依赖库已安装完毕;读取原始二进制格式或其他编码形式存储的数据; ```python import numpy as np from scipy.io import loadmat data = loadmat('path_to_file.mat') image_data = data['variable_name'] ``` - **可视化操作**:利用matplotlib等工具包展示或多序列中的关键特征 ```python import matplotlib.pyplot as plt plt.imshow(image_data, cmap='gray', vmin=0, vmax=255) plt.colorbar() plt.show() ``` - **后续分析工作**:基于具体应用场景设计相应的机器学习模型架构来进行训练测试评估等活动
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值