概率论与数理统计
文章平均质量分 93
Yemiekai
418504286@qq.com
展开
-
古典概型,条件概率,贝叶斯公式
定义,性质定义 设 EEE 是随机试验,SSS 是它的样本空间。 对于 EEE 的每一个事件 AAA 赋予一个实数,记为 P(A)P(A)P(A),称为事件 AAA 的概率。 如果集合函数 P( ⋅ )P(\, \boldsymbol{\cdot} \,)P(⋅) 满足下列条件: 1∘1^{\circ}1∘ 非负性: 对于每一事件 AAA,有 P(A)⩾0P(A) \geqslant 0P(A)⩾0; 2∘2^{\circ}2∘ 规范性: 对于必然事件 SSS,有 P(S)=1P(原创 2021-05-30 16:29:11 · 2332 阅读 · 1 评论 -
高斯混合模型(Gaussian Mixture Model,GMM)和期望最大化(Expectation Maximization,EM)算法
本文是关于 coursera 上 《Robotics: Estimation and Learning》 课程的笔记。前面讲了一维和多维高斯分布的相关知识。但是在某些情况下,使用 单高斯模型(Gaussian single model, GSM) 会有一些局限。在现实世界中我们需要学习的目标可能符合这样的分布 :如上图所示,当你用单高斯模型去拟合它时,得到这样的曲线。显然它不能很好地表征目标。这样的目标有多种模式,或者缺乏对称性。你将看到混合高斯模型的表现力则很好,好到可以建模任意的.原创 2021-05-23 23:04:02 · 1444 阅读 · 0 评论 -
高斯分布的极大似然估计
一维高斯分布一维高斯分布(Gaussian Distribution)的概率密度函数如下:p(x)=12πσexp{−(x−μ)22σ2}p(x)=\frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ - \frac{(x-\mu)^2}{2\sigma^2} \right\}p(x)=2πσ1exp{−2σ2(x−μ)2}高斯分布非常有用,而且非常重要:∙\bullet∙ 描述高斯分布只需要 2 个参数,均值 μ\muμ 和 方差 σ2\sigma^2σ2,原创 2021-05-15 12:45:06 · 9926 阅读 · 1 评论