论文
文章平均质量分 91
Yemiekai
418504286@qq.com
展开
-
华为诺亚 VanillaNet
作者说,在卷积网络中加入人为设计的模块,达到了更好的效果,复杂度也增加了。公式写得很复杂,根据代码的理解,简单来说就是设计了一组卷积核,参数是可学习的,对激活后的数据做一次卷积,再加上BN。)来实现这一点,从而产生了一系列精简的网络,这些网络解决了固有的复杂性问题,非常适合资源有限的环境。,这是一种新颖的神经网络架构,强调设计的优雅和简单,同时在计算机视觉任务中保持卓越的性能。这些复杂的操作需要复杂的工程实现,包括重写 CUDA 的代码。这么弄了之后,为了增强网络的非线性的能力,又提出了一种有效的,原创 2023-06-06 21:01:50 · 1025 阅读 · 0 评论 -
Transformer 简记
Transformer 来自文章 《Attention Is All You Need》,2017 年发表于 NeurIPS(Neural Information Processing Systems)。文章共有 8 位作者,分别来自 Google Brain 和 Google Research,它们对文章具有同等贡献。论文发表时,其中两名作者现在不在谷歌,但是相关成果是在谷歌实习期间完成的。虽然文章名字叫做 “Attention Is All You Need”,然而实际上你需要的不仅仅是 Atten原创 2021-12-29 16:24:42 · 689 阅读 · 1 评论 -
Focal Loss 笔记
Focal loss原创 2021-08-31 09:06:43 · 345 阅读 · 0 评论 -
加权框融合 WBF(Weighted Boxes Fusion: combining boxes for object detection models)
文章PDF地址:https://arxiv.org/abs/1910.13302GitHub地址:https://github.com/ZFTurbo/Weighted-Boxes-Fusion简介作者认为,在目标检测任务中,当实时性要求不强时,集成多个推理模型有助于我们得到更好的结果。于是作者在文中提出了一种方法,可以把多个目标检测模型的预测结果结合起来。这个方法称为 weighted boxes fusion,简称 WBF 。在筛选预测框的过程中,常用的方法是非极大值抑制(non-maxi原创 2021-06-12 16:49:51 · 9892 阅读 · 26 评论