Kafka快速实战与基本原理详解
Kafka是最初由Linkedin公司开发,是一个 分布式、 支持分区的(partition)、 多副本的(replica), 基于zookeeper协调的分布式消息系统,它的最大的特性就是 可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、Storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用 scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。
Kafka的使用场景
- 日志收集:一个公司可以用Kafka收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
- 消息系统:解耦和生产者和消费者、缓存消息等。
- 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
- 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
Kafka基本概念
kafka是一个分布式的,分区的消息(官方称之为commit log)服务。它提供一个消息系统应该具备的功能,但是确有着独特的设计。可以这样来说,Kafka借鉴了JMS规范的思想,但是确并没有完全遵循JMS规范。
名称 | 解释 |
---|---|
Broker | 消息中间件处理节点,一个Kafka节点就是一个broker,一个或者多个Broker可以组成一个Kafka集群 |
Topic | Kafka根据topic对消息进行归类,发布到Kafka集群的每条消息都需要指定一个topic |
Producer | 消息生产者,向Broker发送消息的客户端 |
Consumer | 消息消费者,从Broker读取消息的客户端 |
ConsumerGroup | 每个Consumer属于一个特定的Consumer Group,一条消息可以被多个不同的Consumer Group消费,但是一个Consumer Group中只能有一个Consumer能够消费该消息 |
Partition | 物理上的概念,一个topic可以分为多个partition,每个partition内部消息是有序的 |
因此,从一个较高的层面上来看,producer通过网络发送消息到Kafka集群,然后consumer来进行消费,如下图:
服务端(brokers)和客户端(producer、consumer)之间通信通过TCP协议来完成。
kafka的topic为啥要设计分区的概念
Kafka可以将主题划分为多个分区(Partition),会根据分区规则选择把消息存储到哪个分区中,只要如果分区规则设置的合理,那么所有的消息将会被均匀的分布到不同的分区中,这样就实现了负载均衡和水平扩展。另外,多个订阅者可以从一个或者多个分区中同时消费数据,以支撑海量数据处理能力。
生活场景对比
- Kafka的设计也是源自生活,好比是为公路运输,不同的起始点和目的地需要修不同高速公路(主题),高速公路上可以提供多条车道(分区),
- 流量大的公路多修几条车道保证畅通,流量小的公路少修几条车道避免浪费。
- 收费站好比消费者,车多的时候多开几个一起收费避免堵在路上,车少的时候开几个让汽车并道就好了
kafka基本使用
环境安装及简单使用
- 由于Kafka是用Scala语言开发的,运行在JVM上,因此在安装Kafka之前需要先安装JDK。
- kafka依赖zookeeper,所以需要先安装zookeeper
- 下载2.4.1 release版本,并解压
wget https://archive.apache.org/dist/kafka/2.4.1/kafka_2.11-2.4.1.tgz # 2.11是scala的版本,2.4.1是kafka的版本
tar -xzf kafka_2.11-2.4.1.tgz
- 修改配置
修改配置文件config/server.properties:
#broker.id属性在kafka集群中必须要是唯一
broker.id=0
#kafka部署的机器ip和提供服务的端口号
listeners=PLAINTEXT://192.168.65.60:9092
#kafka的消息存储文件
log.dir=/usr/local/data/kafka-logs
#kafka连接zookeeper的地址
zookeeper.connect=192.168.65.60:2181
- 启动服务
现在来启动kafka服务:
启动脚本语法:
./kafka-server-start.sh -daemon ../config/server.properties
可以看到,server.properties的配置路径是一个强制的参数,-daemon表示以后台进程运行,否则ssh客户端退出后,就会停止服务。(注意,在启动kafka时会使用linux主机名关联的ip地址,所以需要把主机名和linux的ip映射配置到本地host里,用vim /etc/hosts)
# 启动kafka,运行日志在logs目录的server.log文件里
bin/kafka-server-start.sh -daemon config/server.properties #后台启动,不会打印日志到控制台
或者用
bin/kafka-server-start.sh config/server.properties &
# 我们进入zookeeper目录通过zookeeper客户端查看下zookeeper的目录树
bin/zkCli.sh
ls / #查看zk的根目录kafka相关节点
ls /brokers/ids #查看kafka节点
# 停止kafka
bin/kafka-server-stop.sh
server.properties核心配置详解:
Property | Default | Description |
---|---|---|
broker.id | 0 | 每个broker都可以用一个唯一的非负整数id进行标识;这个id可以作为broker的“名字”,你可以选择任意你喜欢的数字作为id,只要id是唯一的即可。 |
log.dirs | /tmp/kafka-logs | kafka存放数据的路径。这个路径并不是唯一的,可以是多个,路径之间只需要使用逗号分隔即可;每当创建新partition时,都会选择在包含最少partitions的路径下进行。 |
listeners | PLAINTEXT://192.168.65.60:9092 | server接受客户端连接的端口,ip配置kafka本机ip即可 |
zookeeper.connect | localhost:2181 | zooKeeper连接字符串的格式为:hostname:port,此处hostname和port分别是ZooKeeper集群中某个节点的host和port;zookeeper如果是集群,连接方式为 hostname1:port1, hostname2:port2, hostname3:port3 |
log.retention.hours | 168 | 每个日志文件删除之前保存的时间。默认数据保存时间对所有topic都一样。 |
num.partitions | 1 | 创建topic的默认分区数 |
default.replication.factor | 1 | 自动创建topic的默认副本数量,建议设置为大于等于2 |
min.insync.replicas | 1 | 当producer设置acks为-1时,min.insync.replicas指定replicas的最小数目(必须确认每一个repica的写数据都是成功的),如果这个数目没有达到,producer发送消息会产生异常 |
delete.topic.enable | false | 是否允许删除主题 |
- 创建主题
现在我们来创建一个名字为“test”的Topic,这个topic只有一个partition,并且备份因子也设置为1:
bin/kafka-topics.sh --create --zookeeper 192.168.1.104:2181 --replication-factor 1 --partitions 1 --topic test
现在我们可以通过以下命令来查看kafka中目前存在的topic。除了我们通过手工的方式创建Topic,当producer发布一个消息到某个指定的Topic,这个Topic如果不存在,就自动创建。
bin/kafka-topics.sh --list --zookeeper 192.168.1.104:2181
删除主题
bin/kafka-topics.sh --delete --topic test --zookeeper 192.168.1.104:2181
- 发送消息
kafka自带了一个producer命令客户端,可以从本地文件中读取内容,或者我们也可以以命令行中直接输入内容,并将这些内容以消息的形式发送到kafka集群中。在默认情况下,每一个行会被当做成一个独立的消息。
首先我们要运行发布消息的脚本,然后在命令中输入要发送的消息的内容:
bin/kafka-console-producer.sh --broker-list 192.168.1.104:9092 --topic test
- 消费消息
对于consumer,kafka同样也携带了一个命令行客户端,会将获取到内容在命令中进行输出,默认是消费最新的消息:
bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.104:9092 --topic test
如果想要消费之前的消息可以通过–from-beginning参数指定,如下命令:
bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.104:9092 --from-beginning --topic test
如果你是通过不同的终端窗口来运行以上的命令,你将会看到在producer终端输入的内容,很快就会在consumer的终端窗口上显示出来。
以上所有的命令都有一些附加的选项;当我们不携带任何参数运行命令的时候,将会显示出这个命令的详细用法。
- 消费多主题
bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.104:9092 --whitelist "test|test1"
- 单播消费
一条消息只能被某一个消费者消费的模式,类似queue模式,只需让所有消费者在同一个消费组里即可
分别在两个客户端执行如下消费命令,然后往主题里发送消息,结果只有一个客户端能收到消息
bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.104:9092 --consumer-property group.id=testGroup --topic test
- 多播消费
一条消息能被多个消费者消费的模式,类似publish-subscribe模式费,针对Kafka同一条消息只能被同一个消费组下的某一个消费者消费的特性,要实现多播只要保证这些消费者属于不同的消费组即可。我们再增加一个消费者,该消费者属于testGroup-2消费组,结果两个客户端都能收到消息
bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.104:9092 --consumer-property group.id=testGroup-2 --topic test
- 查看消费组名
bin/kafka-consumer-groups.sh --bootstrap-server 192.168.1.104:9092 --list
- 查看消费组的消费偏移量
bin/kafka-consumer-groups.sh --bootstrap-server 192.168.1.104:9092 --describe --group testGroup
current-offset:当前消费组的已消费偏移量
log-end-offset:主题对应分区消息的结束偏移量(HW)
lag:当前消费组未消费的消息数
主题Topic和消息日志Log
可以理解Topic是一个类别的名称,同类消息发送到同一个Topic下面。对于每一个Topic,下面可以有多个分区(Partition)日志文件:
Partition是一个有序的message序列,这些message按顺序添加到一个叫做commit log的文件中。每个partition中的消息都有一个唯一的编号,称之为offset,用来唯一标示某个分区中的message。
每个partition,都对应一个commit log文件。一个partition中的message的offset都是唯一的,但是不同的partition中的message的offset可能是相同的。
kafka一般不会删除消息,不管这些消息有没有被消费。只会根据配置的日志保留时间(log.retention.hours)确认消息多久被删除,默认保留最近一周的日志消息。kafka的性能与保留的消息数据量大小没有关系,因此保存大量的数据消息日志信息不会有什么影响。
每个consumer是基于自己在commit log中的消费进度(offset)来进行工作的。在kafka中,消费offset由consumer自己来维护;一般情况下我们按照顺序逐条消费commit log中的消息,当然我可以通过指定offset来重复消费某些消息,或者跳过某些消息。
这意味kafka中的consumer对集群的影响是非常小的,添加一个或者减少一个consumer,对于集群或者其他consumer来说,都是没有影响的,因为每个consumer维护各自的消费offset。
- 创建多个分区的主题:
bin/kafka-topics.sh --create --zookeeper 192.168.1.104:2181 --replication-factor 1 --partitions 2 --topic test2
查看下topic的情况
bin/kafka-topics.sh --describe --zookeeper 192.168.1.104:2181 --topic test2
以下是输出内容的解释,第一行是所有分区的概要信息,之后的每一行表示每一个partition的信息。
- leader节点负责给定partition的所有读写请求。
- replicas 表示某个partition在哪几个broker上存在备份。不管这个几点是不是”leader“,甚至这个节点挂了,也会列出。
- isr 是replicas的一个子集,它只列出当前还存活着的,并且已同步备份了该partition的节点。
我们可以运行相同的命令查看之前创建的名称为”test“的topic
之前设置了topic的partition数量为1,备份因子为1,因此显示就如上所示了。
可以进入kafka的数据文件存储目录查看test和test2主题的消息日志文件:
消息日志文件主要存放在分区文件夹里的以log结尾的日志文件里,如下是test2主题对应的分区0的消息日志:
当然我们也可以通过如下命令增加topic的分区数量(目前kafka不支持减少分区):
bin/kafka-topics.sh -alter --partitions 3 --zookeeper 192.168.1.104:2181 --topic test
可以这么来理解Topic,Partition和Broker
一个topic,代表逻辑上的一个业务数据集,比如按数据库里不同表的数据操作消息区分放入不同topic,订单相关操作消息放入订单topic,用户相关操作消息放入用户topic,对于大型网站来说,后端数据都是海量的,订单消息很可能是非常巨量的,比如有几百个G甚至达到TB级别,如果把这么多数据都放在一台机器上可定会有容量限制问题,那么就可以在topic内部划分多个partition来分片存储数据,不同的partition可以位于不同的机器上,每台机器上都运行一个Kafka的进程Broker。
为什么要对Topic下数据进行分区存储?
1、commit log文件会受到所在机器的文件系统大小的限制,分区之后可以将不同的分区放在不同的机器上,相当于对数据做了分布式存储,理论上一个topic可以处理任意数量的数据。
2、为了提高并行度。
kafka集群实战
对于kafka来说,一个单独的broker意味着kafka集群中只有一个节点。要想增加kafka集群中的节点数量,只需要多启动几个broker实例即可。为了有更好的理解,现在我们在一台机器上同时启动三个broker实例。
首先,我们需要建立好其他2个broker的配置文件:
cp config/server.properties config/server-1.properties
cp config/server.properties config/server-2.properties
配置文件的需要修改的内容分别如下:
config/server-1.properties:
#broker.id属性在kafka集群中必须要是唯一
broker.id=1
#kafka部署的机器ip和提供服务的端口号
listeners=PLAINTEXT://192.168.1.104:9093
log.dir=/usr/local/data/kafka-logs-1
#kafka连接zookeeper的地址,要把多个kafka实例组成集群,对应连接的zookeeper必须相同
zookeeper.connect=192.168.1.104:2181
config/server-2.properties:
broker.id=2
listeners=PLAINTEXT://192.168.1.104:9094
log.dir=/usr/local/data/kafka-logs-2
#kafka连接zookeeper的地址,要把多个kafka实例组成集群,对应连接的zookeeper必须相同
zookeeper.connect=192.168.1.104:2181
启动2个broker实例
bin/kafka-server-start.sh -daemon config/server-1.properties
bin/kafka-server-start.sh -daemon config/server-2.properties
查看zookeeper确认集群节点是否都注册成功:
现在我们创建一个新的topic,副本数设置为3,分区数设置为2:
bin/kafka-topics.sh --create --zookeeper 192.168.1.104:2181 --replication-factor 3 --partitions 2 --topic my-replicated-topic1
查看下topic的情况
bin/kafka-topics.sh --describe --zookeeper 192.168.1.104:2181 --topic my-replicated-topic1
以下是输出内容的解释,第一行是所有分区的概要信息,之后的每一行表示每一个partition的信息。
- leader节点负责给定partition的所有读写请求,同一个主题不同分区leader副本一般不一样(为了容灾)
- replicas 表示某个partition在哪几个broker上存在备份。不管这个节点是不是”leader“,甚至这个节点挂了,也会列出。
- isr 是replicas的一个子集,它只列出当前还存活着的,并且已同步备份了该partition的节点。
现在我们向新建的 my-replicated-topic 中发送一些message,kafka集群可以加上所有kafka节点:
bin/kafka-console-producer.sh --broker-list 192.168.1.104:9092,192.168.1.104:9093,192.168.1.104:9094 --topic my-replicated-topic1
bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.104:9092,192.168.1.104:9093,192.168.1.104:9094 --from-beginning --topic my-replicated-topic1
现在我们来测试我们容错性,因为broker1目前是my-replicated-topic的分区0的leader,所以我们要将其kill
ps -ef | grep server-1.properties
kill 14776
现在再执行命令:
bin/kafka-topics.sh --describe --zookeeper 192.168.1.104:2181 --topic my-replicated-topic1
我们可以看到,分区0的leader节点已经变成了broker 0。要注意的是,在Isr中,已经没有了1号节点。leader的选举也是从ISR(in-sync replica)中进行的。
此时,我们依然可以 消费新消息:
查看主题分区对应的leader信息
get /brokers/topics/my-replicated-topic1/partitions/1/state
kafka将很多集群关键信息记录在zookeeper里,保证自己的无状态,从而在水平扩容时非常方便。
集群消费
log的partitions分布在kafka集群中不同的broker上,每个broker可以请求备份其他broker上partition上的数据。kafka集群支持配置一个partition备份的数量。
针对每个partition,都有一个broker起到“leader”的作用,0个或多个其他的broker作为“follwers”的作用。leader处理所有的针对这个partition的读写请求,而followers被动复制leader的结果,不提供读写(主要是为了保证多副本数据与消费的一致性)。如果这个leader失效了,其中的一个follower将会自动的变成新的leader。
Producers
生产者将消息发送到topic中去,同时负责选择将message发送到topic的哪一个partition中。通过round-robin做简单的负载均衡。也可以根据消息中的某一个关键字来进行区分。通常第二种方式使用的更多。
Consumers
传统的消息传递模式有2种:队列( queue) 和(publish-subscribe)
- queue模式:多个consumer从服务器中读取数据,消息只会到达一个consumer。
- publish-subscribe模式:消息会被广播给所有的consumer。
Kafka基于这2种模式提供了一种consumer的抽象概念:consumer group。
- queue模式:所有的consumer都位于同一个consumer group 下。
- publish-subscribe模式:所有的consumer都有着自己唯一的consumer group。
上图说明:由2个broker组成的kafka集群,某个主题总共有4个partition(P0-P3),分别位于不同的broker上。这个集群由2个Consumer Group消费, A有2个consumer instances ,B有4个。
通常一个topic会有几个consumer group,每个consumer group都是一个逻辑上的订阅者( logical subscriber )。每个consumer group由多个consumer instance组成,从而达到可扩展和容灾的功能。
消费顺序
一个partition同一个时刻在一个consumer group中只能有一个consumer instance在消费,从而保证消费顺序。
consumer group中的consumer instance的数量不能比一个Topic中的partition的数量多,否则,多出来的consumer消费不到消息。
Kafka只在partition的范围内保证消息消费的局部顺序性,不能在同一个topic中的多个partition中保证总的消费顺序性。
如果有在总体上保证消费顺序的需求,那么我们可以通过将topic的partition数量设置为1,将consumer group中的consumer instance数量也设置为1,但是这样会影响性能,所以kafka的顺序消费很少用。