【定义】
回归模型如下:
y= f(x) + ε 其中,ε~N(0,σ^2)
其中,线性回归模型:
y=X*β+ ε 其中,ε~N(0,σ^2*I)
重要的求解除 f(x),解决的思想是:local average。
有两种解决方法:
(1)x 出发,做假设,f(x) = E(Y|X = x) 。
(2)y 出发,做加权平均 ,f(x) = Σ wi(x) * yi ,其中 wi(x) = K((X-Xi)/n) / Σ(K((X-Xi)/n))
其中第一种方法为linear regression (参数(β)回归)一般最小二乘法解决;第二种方法为kernel regression (非参数回归),不需要显式的train过程。
参数回归限制了回归的形式,拟合效果较差,非参数回归数据本身说话,拟合效果更好。
这里主要介绍参数回归方法。
【参数估计】
Q(β) = arg min| y