Regression 算法

本文介绍了回归分析的基本概念,包括线性回归模型和非参数的核回归。线性回归通过最小二乘法求解参数,而核回归则依赖于数据本身进行加权平均。在参数估计中,当矩阵可逆时使用最小二乘法,不可逆时则引入正则化如岭回归和套索回归。此外,文章还提到了模型显著性检验与回归诊断的重要性。
摘要由CSDN通过智能技术生成

【定义】

回归模型如下: 

y= f(x) + ε 其中,ε~N(0,σ^2) 

其中,线性回归模型:

y=X*β+ ε 其中,ε~N(0,σ^2*I)

重要的求解除 f(x),解决的思想是:local average。

有两种解决方法:

(1)x 出发,做假设,f(x) = E(Y|X = x) 。

(2)y 出发,做加权平均 ,f(x) = Σ wi(x) * yi ,其中 wi(x) = K((X-Xi)/n) / Σ(K((X-Xi)/n)) 

  其中第一种方法为linear regression (参数(β)回归)一般最小二乘法解决;第二种方法为kernel regression (非参数回归),不需要显式的train过程。

参数回归限制了回归的形式,拟合效果较差,非参数回归数据本身说话,拟合效果更好。

这里主要介绍参数回归方法。

【参数估计】

Q(β) = arg min| y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值