//李宏毅视频官网:http://speech.ee.ntu.edu.tw/~tlkagk/courses.html 点击此处返回总目录 //邱锡鹏《神经网络与深度学习》官网:https://nndl.github.io
今天主要讲的是Regression。会通过一个例子讲Regression是怎么用的,顺便引出Machine Learning里面的一些重要概念。 ------------------------------------------------------------------------------------------------------------------------------- 首先,Regression可以做什么?除了作业里面的可以预测PM2.5以外,还有很多非常有用的task: 举例来说,股票预测系统。如果要做股票预测系统的话,要做的事情就是找到一个function,这个function的input可能是过去十年各种股票起伏的资料或者是公司并购的信息。希望这个function在input这些资料之后,output呢,是明天的道琼斯工业平均指数。
另一个例子就是现在很火的无人驾驶,也可以想为Regression的例子。input是无人车看到的各种场景(包括红外线感受到的场景、摄像头拍摄到的场景等),output是方向盘旋转的角度。
另外一个例子就是推荐系统,也可以想象成Regression的问题。输入是使用者A浏览商品B或者A购买B的记录,输出是使用者A买商品B的可能性。这样就可以推荐给用户最有可能购买的商品。
------------------------------------------------------------------------------------------------------------------------------- 上面是Regression的种种应用,今天我们要讲一个更实用的应用:预测宝可梦进化后的CP值。
CP值就是战斗力。当我们抓到一只宝可梦之后,给它吃一些东西,它就会进化,进化之后CP值就会变了。
为什么我们希望预测进化后的CP值呢?因为如果我们能够预测进化后的CP值,我们就可以评估是否选择进化这只宝可梦。如果某一只宝可梦进化后的CP值预测的比较低,那就不去进化它了,就可以省下食物了~~
今天要做的事情就是,找到一个function,input为一只宝可梦的信息,output是这只宝可梦进化后的CP值。 x 表示一只宝可梦。
怎么解决这个问题呢?我们知道(第一堂课讲过)做meahine learning就是3个步骤: 1.找到一个model。model就是function的集合。 2.从model中拿一个function,可以evaluate它的好坏。 3.找一个最好的function。
------------------------------------------------------------------------------------------------------------------------------- 首先从第一步开始,Step1:Model。
一个model,就是一个function set。一个model里面有很多个function f1,f2... 在这个task里面,我们的model应该长什么样呢? 我们先胡乱写一个: 即,进化后的值y等于某个常数b加上w乘以进化前的cp值。w和b是参数,可以是任意的数值。 在这个model里面,w和b是未知的,可以把任意的数字填进去。填进不同的数值就得到了不同的function。比如,当b = 10.0,w = 9.0时为f1,当b = 9.8, w=9.2时为f2,...如果b和w可以带任何值的话,function可以有无穷个。用式子(1)代表这些function的集合。 在这些function中,显然有一些是不太正确的,比如f3,当进化前cp为正的,进化后变成了负的,这显然是说不通的。这就是后面要靠training data告诉我们这些function里面哪一个才是合理的function。
(1)这样的model是一种linear model。所谓的linear model,简单来说,是指我们可以把一个function写成如下形式: 其中,
------------------------------------------------------------------------------------------------------------------------------- 我们要收集training data才能够找出这个function。这是一个supervised learning,所以要收集的是function的input和output。 因为这是一个Regression的task,所以output是一个数值。 举例来说,当抓了一只杰尼龟,用 杰尼龟进化为卡咪龟,杰尼龟进化后的cp值为979,用 |
Regression
最新推荐文章于 2025-03-11 16:25:22 发布