2022数学建模美赛C思路

本研究聚焦于2022 MCM C题,涉及交易策略制定,目标是使总回报最大化。文章探讨了如何利用时间序列算法、循环神经网络等预测模型,结合动态规划解决交易策略问题。难点在于数据处理的复杂性,模型需考虑交易成本、交易时间表等约束。最终,通过比较不同模型的预测效果和敏感性分析,确定最佳交易策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已更新

公众号:千千小屋grow

2022 MCM C题:交易策略
背景
背景市场交易员经常买卖波动性资产,其目标是使其总回报最大化。每一次买卖通常都有一笔手续费。其中两种资产是黄金和比特币。
C题是典型的预测+规划问题,涉及到一些量化投资的知识。
背景中交代了有关策略制定的目标函数是:max总回报
变量由黄金和比特币的每日交易量
可以涉及到的算法可以有:时间序列的算法(比如ARIMA)或者循环神经网络(比如LSTM NN)和其他算法如支持向量机(SVM)和卡尔曼滤波(Kalman filter)。在后面要求中会给出具体可行的算法和思路
本研究的难点主要在于数据处理的时间空间复杂度较大。模型建立前要进行数据预处理,如检查缺失值、重复值、对数据进行归一化、时间戳处理等,若想提高训练速度可以用matlab,或python中采用多线程(可调用thread模块中的start_new_thread()函数来产生新线程)。

要求
要求交易员要求您开发一个模型,该模型仅使用迄今为止过去的每日价格流来确定交易员每天是否应该购买、持有或出售其投资组合中的资产。
题目中强调了模型中只能使用迄今为止的每日价格数据,那么在模型中就不能用到其他数据,也不能使用每日之后的数据。
已经给出了充分的数据并限制两个数据文件为解决问题时使用的唯一数据,最后给出的结果应该是一个分别标出了黄金和比特币何时买入何时卖出的时间轴。(最好可以画图表示:价格曲线图加上标出买/卖时间点的图可以更直观地呈现结果。)
同时交易员每天操作的唯一判断依据就是过去的价格流,这个信息比较好地提示了建模的依据。
你将在2016年11月9日从1000美元开始

2022数学建模C是一个关于城市交通拥堵问的生态经济模型。首先,我们需要明确目要求,了解模型所要解决的问。然后,我们可以按照以下步骤进行建模思路的梳理。 首先,我们需要收集相关的数据。可以从城市统计数据、历史交通数据、经济数据等方面获取相关信息,如交通流量、人口分布、交通工具使用情况、交通拥堵时长等。 其次,我们可以建立一个基于网络模型的城市交通网络。通过将城市划分为不同的区域,以及道路、公共交通线路、自行车道等元素的连接方式来模拟城市的道路网络。同时,可以考虑不同区域之间的交通流量、速度限制等因素。 然后,我们可以运用图论算法对城市交通网络进行分析和优化。通过确定最佳路线、最短路径等方式,来解决城市交通拥堵的问。可以考虑使用Dijkstra算法、Floyd算法等进行路径规划。 同时,我们可以引入经济模型,分析交通拥堵对城市的经济影响。可以考虑使用供需模型、成本效益分析等方法来估计交通拥堵对城市经济的损失。 最后,我们可以通过模型的敏感性分析来评估不同因素对交通拥堵的影响程度。可以通过改变参数、假设等方式来模拟不同情景下的交通状况,并分析其对交通拥堵的影响。 在建立模型的过程中,我们要注意合理假设、准确数据和合适的模型选择。同时,也要对结果进行合理解释和评估,以便提出可行的政策建议。 综上所述,2022数学建模C思路主要包括数据收集、网络模型构建、图论算法分析、经济模型引入以及模型的敏感性分析等环节。通过综合运用这些方法,我们可以对城市交通拥堵问进行深入研究,并得出相应的结论和建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千千小屋grow

感谢支持,干杯

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值