LangChain:模型I/O组件

本文介绍了LangChainV0.1.16版本,一个用于快速开发大模型应用的PythonSDK,详细讲解了Message和Prompt的封装,包括Message的不同类型和Prompt的模板使用。还涵盖了LLMs和ChatModels的模型封装及其invoke和generate方法的用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客使用的langchain版本为 V0.2.11。当下Langchain更新较快,在使用的时候要注意。
目前对于langchain只是刚入门,对langchain的学习和理解可能会有错误,后续会回来修改。

  LangChain是一个大语言模型(LLM)的应用开发框架(SDK),可以帮助开发人员快速搭建大模型应用。在Python上可以使用如下命令安装LangChain:

pip install langchain

  LangChain中的模型I/O可以使开发者无须深入理解各个模型平台的API调用协议就可以方便地与各种大语言模型平台进行交互。所以本质上,模型I/O组件就是对各个模型平台API的封装。

1 模型I/O封装

  Langchain封装了很多第三方的模型,主要分成了两大类:LLMs和ChatModels。目前这些模型分别封装在langchain_community.llmslangchain_community.chat_models中。关于这两类模型,需要注意以下几点:

  • LLM: 提供大语言模型的API接口,可以用于语言生成、语言理解和文本补全等单轮任务。
  • ChatModel: LLM的一种变体,主要抽象了在聊天这一场景下的使用模式。这类模型非常适用于构建能与人进行自然语言交流的多轮对话应用,比如客服机器人、语音助手等。
    关于Message类和Prompt类参考:https://blog.csdn.net/yeshang_lady/article/details/140753520
  • 另外,还有一些模型的封装已经从langchain_community中独立里出去,以独立的第三方包langchain-{package}形式存在,这些包需要使用pip指令单独下载。具体的模型列表可在该页面上查询到:https://python.langchain.com/docs/integrations/platforms/
  • Langchain对常见大语言模型进行了封装,但是各个大语言模型对应的python包和模型的key都需要用户自己去获取。

2. 用法举例

LLM型模型和ChatModel型模型的主要方法都类似,下面将依次介绍其中的重要方法(持续补充)。

2.1 invoke

invoke方法调用模型并获取相应(该方法还有一个异步版本ainvoke)。具体用法如下:

from langchain_community.chat_models import ChatTongyi
from langchain_community.llms import Tongyi
from langchain.schema import HumanMessage,SystemMessage,AIMessage
from langchain.prompts 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值