大语言模型
文章平均质量分 90
以GPT为主;
路漫漫其修远兮.....
Sun_Sherry
这个作者很懒,什么都没留下…
展开
-
LangChain:与RAG相关的模块
本篇博客主要整理LangChain中与RAG(Retrieval-Augmented Generation,即检索增强生成)相关的模块。原创 2024-08-12 17:42:17 · 471 阅读 · 0 评论 -
LangChain: Runnable的定义和使用
在LangChain中,Runnable是LangChain中用于定义一个可运行对象的抽象接口。它允许开发者定义任何执行某种操作的逻辑单元,并通过标准化的方法使其能够在更大的系统中无缝协作。原创 2024-07-31 16:07:40 · 1264 阅读 · 0 评论 -
LangChain: Message封装和Prompt封装
本篇博客主要介绍Langchain中的Message和Prompt封装。原创 2024-07-28 21:26:09 · 802 阅读 · 0 评论 -
利用react和chainlit开发大模型结果人工评测平台
利用LLM的prompt做了个简单的服务推荐助手,依据用户的提问找出合适的服务项目推荐给的用户。为了测评prompt的效果,使用react+chainlit开发了一个简单的效果测评平台。在该平台上,可以模拟用户向LLM发出问题,并对大模型返回的服务项目进行评判。鉴于后端prompt暂时无法公开,这里仅公开前端的react代码,至于后端代码可以参考chainlit官方提供的样例(原创 2024-07-15 14:05:32 · 303 阅读 · 0 评论 -
LangChain:输出封装OutputParser
LLM模型的输出通常都是字符串形式,Langchain中的输出封装`OutputParser`可以将其转化解析成结构化对象。原创 2024-04-24 10:53:14 · 1819 阅读 · 0 评论 -
LangChain:模型I/O组件
LangChain是一个大语言模型(LLM)的应用开发框架(SDK),可以帮助开发人员快速搭建大模型应用。原创 2024-04-13 20:14:53 · 1268 阅读 · 0 评论 -
LLM:检索增强生成(RAG)
其基本思想是利用信息检索的技术,从大规模语料库(存储在向量数据库)中检索出与当前任务相关的文本片段,并将这些文本片段作为输入提供给生成模型,以引导生成模型产生更准确、更相关的文本输出。通过预训练的方式,GPT模型能够学习得到通用的文本表示,从而在各种自然语言处理任务中表现出色,包括文本生成、文本分类、问答等。简单地说,嵌入(Embedding)思想可以视为一种尝试通过用向量来表示所有东西的“本质”的方法,其特性是“相近的事物”由相近的数表示。参数调整输出的文本向量的维度。原创 2024-04-03 18:16:02 · 1379 阅读 · 0 评论 -
LLM:函数调用(Function Calling)
虽然大模型能解决很多问题,但大模型并不能知晓一切。比如,大模型不知道最新消息(GPT-3.5 的知识截至 2021年9月,GPT-4 是 2023 年12月)。另外,大模型没有“真逻辑”。它表现出的逻辑、推理,是训练文本的统计规律,而不是真正的逻辑,所以有幻觉。所以大模型需要连接真实世界,并对接真逻辑系统。这就需要用到“函数调用”。让用户能够使用高效的外部工具、与外部API进行交互。函数调用(Function Calling)可以。在使用GPT模型进行函数调用时,需要用到。原创 2024-03-31 18:39:09 · 1820 阅读 · 0 评论 -
GPT:多轮对话并搭建简单的聊天机器人
多轮对话能力至关重要,它不仅能深化交流,精准捕捉对方意图,还能促进有效沟通,增强理解。在智能客服、教育辅导等领域,多轮对话更是提升服务质量、增强用户体验的关键。原创 2024-03-28 15:30:39 · 2781 阅读 · 2 评论 -
LLM: Prompt的使用
本文用的LLM是openai的gpt系列。Prompt是输入给AI模型的文本或语句,用来引导大模型(Large Language Model, LLM)生成相关的输出。好的prompt可以提高大模型输出的准确性和可靠性。。原创 2024-03-25 19:58:28 · 1726 阅读 · 0 评论