NLP: SBERT介绍及sentence-transformers库的使用

1. Sentence-BERT

  Sentence-BERT(简写SBERT)模型是BERT模型最有趣的变体之一,通过扩展预训练的BERT模型来获得固定长度的句子特征,主要用于句子对分类、计算两个句子之间的相似度任务。

1.1 计算句子特征

  SBERT模型同样是将句子标记送入预训练的BERT模型来获取句子特征的,但这里并不使用 R [ C L S ] R_{[CLS]} R[CLS]作为最终的句子特征。在SBERT中,通过汇聚所有标记的特征来计算整个句子的特征。具体的汇聚方法有两种:平均汇聚和最大汇聚。

  • 平均汇聚:使用平均汇聚来获取句子特征。这种方法得到的句子的特征将包含所有词语(Token)的意义。
  • 最大汇聚:使用最大汇聚来获取句子特征。这种方法得到的句子的特征将仅包含重要词语(Token)的意义。
    在这里插入图片描述

1.2 SBERT架构

  SBERT模型使用二元组网络架构来执行以一对句子作为输入的任务,并使用三元组网络架构来实现三元组损失函数。

1.2.1 使用二元组网络架构的SBERT模型

  SBERT通过二元组网络(两个共享同样权重的相同网络)架构对执行句子对任务的预训练的BERT模型进行微调。句子对任务具体包括以下两种:

  • 句子对分类任务: 判断句子对是否相似。相似则返回1,不相似则返回0。其SBERT模型架构为:
    在这里插入图片描述
  • 句子对回归任务:计算两个给定句子之间的语义相似度。其对应的SBERT架构为:在这里插入图片描述
1.2.2 使用三元组网络架构的SBERT模型

  三元组网络架构的SBERT模型的任务计算出一个特征,使锚定句和正向句之间的相似度高,锚定句和负向句之间的相似度低。其架构如下:
在这里插入图片描述

2. 计算文本相似度

2.1 bi-encoder VS cross-encoder

  bi-encoder和cross-encoder是语义匹配、文本相似度、信息检索场景下下常用的两种模型架构。这两者都基于深度学习模型(如BERT等)进行编码和比较文本之间的相似度,但它们在计算方式、效率和适用场景上有显著的区别。

2.1.1 bi-encoder

  bi-encoder是一种独立编码方式,即输入的两个文本会被分别编码为独立的向量,然后通过计算这两个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值