动态规划简单理解

递归到动规的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围。
数组元素的值是递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于
计算递归函数的逆过程。


动规解题的一般思路


1.将原问题分解成子问题



a.把原问题分解成若干个小的子问题,子问题和原问题形式相同或类似,只不过规模变
小了。子问题都解决了,原问题即解决(数字三角形为例)。
b.子问题的解一旦求出就会被保存,所以没个子问题只需求解一次。


2.确定状态


a.在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为
一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”对应于一个
或者多个子问题。所谓某个“状态”下的解的“值”,就是这个“状态”所对应的子问
题的解。


b.所有“状态”的集合,构成了问题的“状态空间”。“状态空间”的大小,与用
动态规划解决问题的时间复杂度直接相关。在数字三角形的例子里,一共有N*(N+1)/2

个状态,所以这个问题的状态空间一共就有N*(N+1)/2个状态。


整个问题的时间复杂度是状态数目乘以计算每个状态所需的时间。

在数字三角形的每个状态只需要计算一次,且在每个状态上所做的计算所花的时间
都是和N无关的常数。

用动态规划解题,经常碰到的情况是,k个整型变量能构成一个状态(如数字三角形
中的行号和列号者两个变量)。如果这k个整型变量的取值范围分别是N1,N2,N3,...
NK,那么,我们就可以用一个k维的数组array[N1][N2][N3][N4]...[NK]来存储各个状
态的“值”。这个“值”未必是一个整数或者是浮点数,可能是需要一个结构才能表
示的,那么array的值就可以是一个结构数组。一个“状态”下的值通常是一个或多个
子问题的解。

3.确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是地板数字值。

4.确定状态方程

定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间
如何迁移--即如何从一个或者多个“值”已知的“状态”,求出另一个“状态”的“值”
(“人人为我”递推型)。状态的迁移可以用另一个递推公式表示,次递推公式可以被
称作“状态转移方程”。

数字三角形的状态转移方程:



能用动归解决的问题的特点

1.问题具有最优子结构性质
如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质

2.无后效性。当前的若干个状态值一旦确定了,则此后过程的演变就只和这若干个状态的值
有关,和之前是采取哪种手段或是经过哪条路径演变到当前这若干个状态,没有关系。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值