题目的意思就是给出n种货币.接下去n行,给出每种货币和其他n - 1种货币的汇率;
问能不能换一圈回来,升值了0.01;
这题是在图论那一章,但我觉得更像DP;
d[k][i][j] 表示经过k次兑换,从i货币,变成j货币的最大汇率.
等于 max { d[k - 1][i][t] + ex[t][j] } 是第k - 1次兑换从i货币到t货币 加上t到j的汇率 中最大的一个.
然后要找到d[k][i][i] > 1.01;(k从小到大找,最先满足的就是转化次数最少的)
因为要打印路径,所以用一个path[k][i][j],表示i转到j的最后一次转化是哪种货币,在递归打印.
AC代码:
#include<stdio.h>
#include<string.h>
const int N = 30;
double ex[N][N];
double d[N][N][N];
int path[N][N][N];
int n;
void print(int k, int i, int j) {
if (k == 1) {
printf("%d",i);
return ;
}
else
print(k - 1 , i , path[k][i][j]);
printf(" %d",path[k][i][j]);
}
bool floyd() {
for (int k = 2 ; k <= n ;k++) {
for (int i = 1 ; i <= n ;i++) {
for (int j = 1 ; j <= n ;j++) {
double m = 0 ;
int pos;
for (int t = 1 ; t <= n ;t++) {
if (d[k - 1][i][t] * ex[t][j] > m) {
m = d[k - 1][i][t] * ex[t][j];
pos = t;
}
}
d[k][i][j] = m;
path[k][i][j] = pos;
}
if (d[k][i][i] - 1.01 > 1e-8) {
print(k, i, i);
printf(" %d\n",i);
return true;
}
}
}
return false;
}
int main () {
while(~scanf("%d",&n)) {
for (int i = 1 ; i <= n ;i++) {
for (int j = 1 ; j <= n ;j++) {
if (i != j) {
scanf("%lf",&ex[i][j]);
d[1][i][j] = ex[i][j];
}
}
}
if (!floyd()) {
printf("no arbitrage sequence exists\n");
}
}
}