tensorflow一元线性模型

这篇博客介绍了如何利用TensorFlow库构建一元线性模型。通过生成随机数据,作者展示了创建线性模型的过程,并应用梯度下降优化器进行训练。在200次迭代中,模型参数(斜率k和截距b)逐步调整以最小化平方差损失函数。
摘要由CSDN通过智能技术生成

import tensorflow as tf
import numpy as np
x_data=np.random.rand(100)    #生成100个随机数
noise=np.random.normal(0,0.05,x_data.shape)    #生成随机偏差点
y_data=x_data*0.1+0.2+noise             #生成随机训练点
b=tf.Variable(0.)
k=tf.Variable(0.)
y=k*x_data+b                         #构造一个线性模型
loss=tf.reduce_mean(tf.square(y_data-y))   #使用平方差损失函数
optimizer=tf.train.GradientDescentOptimizer(0.2)  #选用梯度下降优化,定义梯度下降法进行训练的优化,学习率(下降率)为0.2
train=optimizer.minimize(loss)   #最小化代价函数,loss越小越好
init=tf.global_variables_initializer()    #初始化变量
with tf.Session() as sess:
    sess.run(init)
    for step in range(201):
        sess.run(train)
        if step%20==0:
            print(step,sess.run([k,b]))
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

miaobinfei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值