import tensorflow as tf
import numpy as np
x_data=np.random.rand(100) #生成100个随机数
noise=np.random.normal(0,0.05,x_data.shape) #生成随机偏差点
y_data=x_data*0.1+0.2+noise #生成随机训练点
b=tf.Variable(0.)
k=tf.Variable(0.)
y=k*x_data+b #构造一个线性模型
loss=tf.reduce_mean(tf.square(y_data-y)) #使用平方差损失函数
optimizer=tf.train.GradientDescentOptimizer(0.2) #选用梯度下降优化,定义梯度下降法进行训练的优化,学习率(下降率)为0.2
train=optimizer.minimize(loss) #最小化代价函数,loss越小越好
init=tf.global_variables_initializer() #初始化变量
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step%20==0:
print(step,sess.run([k,b]))
tensorflow一元线性模型
最新推荐文章于 2024-11-08 22:27:53 发布
这篇博客介绍了如何利用TensorFlow库构建一元线性模型。通过生成随机数据,作者展示了创建线性模型的过程,并应用梯度下降优化器进行训练。在200次迭代中,模型参数(斜率k和截距b)逐步调整以最小化平方差损失函数。
摘要由CSDN通过智能技术生成