【模板】——线段树(求和)

线段树是一种二叉树可以用数组来实现
存储需要的空间为
n往上的2^n取整再乘以2
如 28 -> 32 x 2 -> 64足够了
我们规定根节点为1
发现每个节点的左子节点为父节点的两倍,右子节点为父节点的两倍加一
在这里插入图片描述

void pushup(int rt)//更新父节点 
{
	sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
void build(int l, int r, int rt)//rt---root表示当前的节点 
{
	add[rt] = 0;// 
	if (l == r)
	{
		scanf("%d", &sum[rt]);//在这里读入数据
		return;
	}
	int m = (l + r) >> 1;
	build(l, m, rt << 1);
	build(m + 1, r, rt << 1 | 1);
	pushup(rt);
}
void pushdown(int rt, int len)
{
	if (add[rt])
	{
		add[rt << 1] += add[rt];//要加的分到子节点
		add[rt << 1 | 1] += add[rt];
		sum[rt << 1] += add[rt] * (len - (len >> 1));//子节点加上
		sum[rt << 1 | 1] += add[rt] * (len >> 1);//len>>1可能小一
		add[rt] = 0;//记得标为0
	}
}
void update(int L, int R, int c, int l, int r, int rt)//[L,R]区间数加上c 
{
	if (L <= l && r <= R)
	{
		add[rt] += c;
		sum[rt] += c*(r - l + 1);//父节点把子节点要加的一次加上
		return;
	}
	pushdown(rt, r-l+ 1);
	int m = (l + r) >> 1;
	if (L <= m)update(L, R, c, l, m, rt << 1);
	if (m < R) update(L, R, c, m + 1, r, rt << 1 | 1);
	pushup(rt);
}
int query(int L, int R, int l, int r, int rt)
{
	if (L <= l && r <= R)//看区间[l-r]在不在[L,R]内 
		return sum[rt];
	pushdown(rt, r - l + 1);
	int m = (l + r) >> 1;
	int ret = 0;
	if (L <= m) ret += query(L, R, l, m, rt << 1);
	if (m < R)  ret += query(L, R, m + 1, r, rt << 1 | 1);
	return ret;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值