2021杭电多校第三场 1010——Road Discount

该博客介绍了如何利用图论中的最小生成树算法解决一个特殊的网络连通问题。给定一定数量的点、边,每条边有两个费用值,原费用和折扣费用,求在使用一定数量折扣边的情况下,最小总费用。博主通过构造白边和黑边,分别跑Prim或Kruskal算法,然后采用二分查找结合最小生成树的方法求解,最终得出不同折扣边数下的最小费用。代码中展示了详细的实现过程。
摘要由CSDN通过智能技术生成

题目大意

给你 n n n 个点, m m m 条边,每条边都有两个值 c i , d i c_i, d_i ci,di,代表原始花费和折扣后的花费,问你使用 k k k 条折扣后的边使这 n n n 个点联通,最小花费是多少。对于 k ∈ [ 0 , n − 1 ]   k ∈ Z k \in [0,n-1] \ k\in Z k[0,n1] kZ 每一个值你都需要回答,题目保证有解。
2 ≤ n ≤ 1000 , n − 1 ≤ m ≤ 2 × 1 0 5 , 1 ≤ d i ≤ c i ≤ 1000 2\leq n\leq1000, n-1\leq m\leq 2\times 10^5,1\leq d_i \leq c_i \leq 1000 2n1000,n1m2×105,1dici1000

解题思路

记原始花费边为白边,折扣后的边为黑边,我们对白边和黑边分别跑一次最小生成树,这样所有被用到的边就是答案可能用到的边,这时边的规模减少到了 2 × ( n − 1 ) 2\times(n-1) 2×(n1)
我们知道一个很经典的问题,就是问你恰好选 k k k 条黑边的最小花费是多少,那个问题的做法是二分+最小生成树,给黑边加上一个很大的值 c c c,然后每次二分 c c c c h e c k check check 答案。
在这里我们注意到 c ≤ 1000 c \leq 1000 c1000 ,我们可以对每一个 c c c 跑一次最小生成树,每次求得 { s u m , n u m } \{sum, num\} {sum,num},即花费和使用黑边的条数。这时答案是 s u m − c × n u m sum - c\times num sumc×num
我们从 0 0 0 1000 1000 1000 遍历 c c c,显然我们 c c c 越小,选取的黑边数越多,所以我们在寻找答案的时候,找到第一个满足条件的 n u m num num,此时答案就是 s u m i − c × k sum_i - c \times k sumic×k
为什么不是 s u m i − c × n u m i sum_i - c \times num_i sumic×numi 呢?,这时因为如果当 c = c 0 c = c_0 c=c0 时选取了 r r r 条黑边, c = c 0 + 1 c = c_0 + 1 c=c0+1 时选取了 l l l 条黑边,这时,我们选取 l ≤ k ≤ r l\leq k\leq r lkr 条黑边也是合法的,因为选出 l l l 条黑边的原因是,当黑边加上 c c c 等于白边的花费时,我们优先选择白边,所以乘以 k k k 才是最优解。

Code

#include <bits/stdc++.h>
#define ll long long
#define qc ios::sync_with_stdio(false); cin.tie(0);cout.tie(0)
#define fi first
#define se second
#define PII pair<int, int>
#define PLL pair<ll, ll>
#define pb push_back
using namespace std;
const int MAXN = 1e3 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll mod = 1e9 + 7;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
    while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
int fa[MAXN];
void init(){
	for (int i = 0; i <= MAXN-1; ++i){
	    fa[i] = i;
	}
}
int find(int x){
	return x == fa[x] ? x : fa[x] = find(fa[x]);
}
void merge(int x, int y){
	x = find(x);
	y = find(y);
	if(x != y)
		fa[y] = x;
}
int n, m;
struct node{
	int u, v, w;
	int f;
	bool operator<(node b) const {
		if(w != b.w)
			return w < b.w;
		return f < b.f;
	}
};
const int P = 1000;
PII ans[MAXN << 1];
void solve(){
	cin >> n >> m;
	memset(ans, 0, sizeof ans);
	vector<node> v1, v2;
	for (int i = 1; i <= m; ++i){
		node tmp;
		cin >> tmp.u >> tmp.v >> tmp.w;
		tmp.f = 0;
		v1.pb(tmp);
		cin >> tmp.w;
		tmp.f = 1;
		v2.pb(tmp);
	}
	init();
	sort(v1.begin(), v1.end());
	vector<node> v;
	for(auto it : v1){
		if(find(it.u) != find(it.v)){
			merge(it.u, it.v);
			v.pb(it);
		}
	}
	init();
	sort(v2.begin(), v2.end());
	for(auto it : v2){
		if(find(it.u) != find(it.v)){
			merge(it.u, it.v);
			v.pb(it);
		}
	}
	sort(v.begin(), v.end());
	for(int c = 0; c <= 1000; c++){
		init();
		int sum = 0;
		int num = 0;
		vector<node> vv;
		for(auto it : v){
			node tmp = it;
			if(tmp.f) tmp.w += c;
			vv.pb(tmp);
		}
		sort(vv.begin(), vv.end());
		for(auto it : vv){
			if(find(it.u) != find(it.v)){
				merge(it.u, it.v);
				sum += it.w;
				num += it.f;
			}
		}
		ans[c] = {sum, num};
	}
	for(int i = 0; i < n; i++){
		for(int j = 0; j <= P; j++){
			if(ans[j].se <= i){
				cout << ans[j].fi - j*i << "\n";
				break;
			}
		}
	}
}

int main()
{
    #ifdef ONLINE_JUDGE
    #else
       freopen("in.txt", "r", stdin);
       freopen("out.txt", "w", stdout);
    #endif

    qc;
    int T;
    cin >> T;
    while(T--){

        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值