NLP复习

二、embedding     
NNLM->Word2vec->Doc2vec->FastText->ELMO
->GPT->Bert
     
1. word2vec的原理,为何使用哈夫曼树,如何构建哈夫曼,负采样的原理; word2vec的CBOW与skipGram模型及两种训练方式(负采样\层级softmax),两种训练方式的区别和应用场景。
2. 对于一个取值较多的类别变量,在不能进行onehot的情况下如何使用
写个tf-idf     
CountVectorizer     
3. 预训练向量模型的理解,从word2vec到bert,到ERNIE与XLNET,Bert与ERNIE和Xlnet需要有所了解
4. 常见的语言模型有哪些;     
5. Glove与word2vec的比较;Glove如何训练的,用的多少维; 
6. 如何计算两个句子相似度;    
7. 词袋模型;     
7. fasttext。 讲一下fasttext,说一下与word2vec的联系与区别,训练word2vec有哪些重要参数;word2vec是哪个包下面的模型,自己怎么训练的,有哪些参数可以设置,参数是怎么设置的,为什么这么设置;
三、建模     
1. 解释textCNN,讲一下cnn,为什么cnn中要padding、池化呢;卷积的意义 池化的意义:一种降采样技术,目标就是要减少后面进行全连接的数据量卷积的意义:衡量输入和核函数的匹配度,一各卷积核可以提取图片中特定的特征  
2. 解释下textRNN与lstm的联系与区别 13. RNN以及RNN的初始化; 
3. RNN与lstm有什么区别,lstm解决了RNN的什么问题,如何解决的,写下解决的原理,lstm解决梯度消失的本质原因(方向更新参数时RNN的激活函数f为指数次,lstm变成了求和的形式)。LSTM的图,GRU的图; rnn、lstm、gru的区别,LSTM的单元结构图和6个公式要记住     
4. bi-lstm     
bi-lstm-attention     
LSTM+attention机制是如何做句子分类的。     
5. attention机制:     
1) attention为什么比RNN、CNN好     
2) attention序列的对齐机制;     
3)有几种attention,Attention和self-attention具体是怎么实现的,对应什么场景;     
7. 解释下seq2seq模型,如果用seq2seq进行embedding,做相似度计算,会如何(替代Glove的话)     
6. transoformer的整体架构,transofmer提出的Q、K、v,多头的理解、position embedding位置编码、Mask操作。transormfer的encoder和decoder有哪些不同;     
encoder-decoder attention与self-attention 的mechanism有哪些不同?     
mult-head self attention具体的计算过程是怎样的?     
5.2 Transformer在GPT和Bert等词向量预训练模型中具体是怎么应用的?有什么变化?     
5.3 muti-head attention和scaled dot-product attention:为什么是缩放点积,而不是点积模型,相较于加性模型,点积模型具备哪些优点?     
多头机制为什么有效;     
5.6. transformer为什么比lstm好     
17. 解释bert,bert的模型架构,多少层、什么任务适合bert,什么任务不适合。 BERT和GPT的区别;     
12. 常见的分词算法,词袋模型(tfidf,textrank)     
13 解释下textrank,pagerank,doc2vec     
14. 简历上项目如何设计的,遇到过哪些印象深刻的问题;  
15. HMM过程是怎样的,对HMM,CRF的理解,CRF的损失函数是什么,维特比算法的过程    
16. 怎么调试tensorflow;     
18. tensorflow手写一个卷积代码       
19. 项目中遇到了哪些困难,如何解决的;                                                                                                                                       
6. bi_lstm+crf的损失函数,损失函数中的max有什么作用,为什么要减去这个max。实体抽取的项目中,bilstm是如何与crf链接的?bi-lstm起的作用是啥,能否用cnn代替
      
六、tensorflow的使用     
1)tf如何加入L2正则;     
      
七、一套文本分类的框架     
      
八、项目     
数据预处理:     
正则表达式去除标点     
停用词去去除没有用的词     
提取词干     
字母大写转小写     
按照单词创建词表     
数据量多少     
最后结果是什么     
网络输入的tensor是什么样的,最终输出是多少   
项目细节:比如清洗流程、Embedding的维度之类  
模型的参数要记一记     
      
深度学习面试题刷面经    
1. 简单实现bp算法或者梯度下降    
2. 池化层如何反向传播     
3. 上采样有哪些方法     
4. 激活函数与损失函数,用到了什么激活函数,怎么选择激活函数的使用;
5. 梯度消失、梯度爆炸的原因和解决方法   
6. 说说BN层的作用,加在激活函数前与后效果有何不同;  
7. 如何理解dropout机制,dropout机制在解决一个什么问题,其中的原理
8. L1正则与L2正则的作用     
11. 讲一下高方差和高偏差;     
12. 在项目中使用到了f1, 为什么不用precision、recall  
14、模型过拟合了怎么处理     
1)加入L2正则     
2)early stopping     
3)dropout     
4)简化模型结构;     
      
写个快排、几个简单的数据结构算法    
1. 笔试全是跟pandas相关的,复杂点的用apply、groupby、agg 
2. tensorflow面试题     
3. numpy面试题     
      
大数据     
1. 阐述Hadoop与Spark的区别     
2. Spark的工作原理是什么     
机器学习面试题     
1. 特征工程如何做的,有哪些特征    
2. 单模型与模型融合的结果差距多少,如何进行的融合  
3. 阐述SVM原理,为何使用对偶性以及对偶性原理,SVM如何解决多分类,SVM与LR对比
4. 二分类,多分类,ovr ov?    
5. 阐述GBDT、xgboost、lightGBM的异同,xgb的优势,lgb的优势 
6. 写公式:交叉熵、softmax     
7.写公式并说一下KNN、kmeans、朴素贝叶斯的原理  
8.在分类任务中,会用到哪些loss function   
9. 监督与无监督的区别     
10. 机器学习和深度学习过拟合问题以及解决方法   
11. GBDT和randomforest介绍,xgboost的节点是如何分裂的  
12. 推导LR, 逻辑回归的优缺点    
13. 讲讲randomforest,决策树,ID3,C4.5, CART,写出公式 
五、性能评估     
评估方法     
recall     
acc:解释下acc和precision     
precision     
有什么区别,都是越高越好吗     
      

一、数据预处理:(1天)
正则表达式去除标点
停用词去去除没有用的词
提取词干
字母大写转小写
按照单词创建词表

二、embedding:(2天)
1. word2vec的原理,为何使用哈夫曼树,如何构建哈夫曼,负采样的原理; word2vec的CBOW与skipGram模型及两种训练方式(负采样\层级softmax),两种训练方式的区别和应用场景。

2. 对于一个取值较多的类别变量,在不能进行onehot的情况下如何使用
写个tf-idf
CountVectorizer
3. 预训练向量模型的理解,从word2vec到bert,到ERNIE与XLNET,Bert与ERNIE和Xlnet需要有所了解

4. 常见的语言模型有哪些;

5. Glove与word2vec的比较;Glove如何训练的,用的多少维;

6. 如何计算两个句子相似度;

7. 词袋模型;

三、建模:(4天)
1. 解释textCNN
2. 解释下textRNN与lstm的联系与区别

3. RNN与lstm有什么区别,lstm解决了RNN的什么问题,如何解决的,写下解决的原理,lstm解决梯度消失的本质原因(方向更新参数时RNN的激活函数f为指数次,lstm变成了求和的形式)。LSTM的图,GRU的图; rnn、lstm、gru的区别,LSTM的单元结构图和6个公式要记住

4. bi-lstm
bi-lstm-attention

LSTM+attention机制是如何做句子分类的。

5. attention机制:

1) attention为什么比RNN、CNN好

2) attention序列的对齐机制;

3)有几种attention,Attention和self-attention具体是怎么实现的,对应什么场景;

6. transoformer的整体架构,transofmer提出的Q、K、v,多头的理解、position embedding位置编码、Mask操作。transormfer的encoder和decoder有哪些不同;

encoder-decoder attention与self-attention 的mechanism有哪些不同?

mult-head self attention具体的计算过程是怎样的?

5.2 Transformer在GPT和Bert等词向量预训练模型中具体是怎么应用的?有什么变化?

5.3 muti-head attention和scaled dot-product attention:为什么是缩放点积,而不是点积模型,相较于加性模型,点积模型具备哪些优点?

多头机制为什么有效;

5.6. transformer为什么比lstm好

6. bi_lstm+crf的损失函数,损失函数中的max有什么作用,为什么要减去这个max。实体抽取的项目中,bilstm是如何与crf链接的?bi-lstm起的作用是啥,能否用cnn代替

7. fasttext。 讲一下fasttext,说一下与word2vec的联系与区别,训练word2vec有哪些重要参数;word2vec是哪个包下面的模型,自己怎么训练的,有哪些参数可以设置,参数是怎么设置的,为什么这么设置;

7. 解释下seq2seq模型,如果用seq2seq进行embedding,做相似度计算,会如何(替代Glove的话)

12. 常见的分词算法(tfidf,textrank)

13 解释下textrank

14. 简历上项目如何设计的,遇到过哪些印象深刻的问题;

15. HMM过程是怎样的,对HMM,CRF的理解,CRF的损失函数是什么,维特比算法的过程

16. 怎么调试tensorflow;

17. 解释bert,bert的模型架构,多少层、什么任务适合bert,什么任务不适合。 BERT和GPT的区别;

18. tensorflow手写一个卷积代码   

19. 项目中遇到了哪些困难,如何解决的;                                                                                                                                       

五、性能评估(0.5天)
评估方法
recall
acc:解释下acc和precision
precision
有什么区别,都是越高越好吗

六、tensorflow的使用
1)tf如何加入L2正则;

七、一套文本分类的框架

八、项目(2day)

数据量多少

最后结果是什么

网络输入的tensor是什么样的,最终输出是多少

项目细节:比如清洗流程、Embedding的维度之类

模型的参数要记一记

 

机器学习面试题(2day)

1. 特征工程如何做的,有哪些特征

2. 单模型与模型融合的结果差距多少,如何进行的融合

3. 阐述SVM原理,为何使用对偶性以及对偶性原理,SVM如何解决多分类,SVM与LR对比

4. 二分类,多分类,ovr ov?

5. 阐述GBDT、xgboost、lightGBM的异同,xgb的优势,lgb的优势

6. 写公式:交叉熵、softmax

7.写公式并说一下KNN、kmeans、朴素贝叶斯的原理

8.在分类任务中,会用到哪些loss function

9. 监督与无监督的区别

10. 机器学习和深度学习过拟合问题以及解决方法

11. GBDT和randomforest介绍,xgboost的节点是如何分裂的

12. 推导LR, 逻辑回归的优缺点

13. 讲讲randomforest,决策树,ID3,C4.5, CART,写出公式

 

深度学习面试题(2day)

1. 简单实现bp算法或者梯度下降

2. 池化层如何反向传播

3. 上采样有哪些方法

4. 激活函数与损失函数,用到了什么激活函数,怎么选择激活函数的使用;

5. 梯度消失、梯度爆炸的原因和解决方法

6. 说说BN层的作用,加在激活函数前与后效果有何不同;

7. 如何理解dropout机制,dropout机制在解决一个什么问题,其中的原理

8. L1正则与L2正则的作用

10. 讲一下cnn,为什么cnn中要padding、池化呢;卷积的意义

11. 讲一下高方差和高偏差;

12. 在项目中使用到了f1, 为什么不用precision、recall

13. RNN以及RNN的初始化;

14、模型过拟合了怎么处理
1)加入L2正则
2)early stopping
3)dropout
4)简化模型结构;

 

写个快排(2day)

1. 笔试全是跟pandas相关的,复杂点的用apply、groupby、agg

2. tensorflow面试题

3. numpy面试题

3. 数据结构面试题

大数据

1. 阐述Hadoop与Spark的区别

2. Spark的工作原理是什么

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值