机器学习-随机森林-总结及源代码应用(python版)

本文介绍了随机森林这一机器学习模型,强调其对数据共线性和缺失值的稳健性。通过一个网络流量分类的实验,详细展示了数据预处理、模型构建、特征选择和归一化的过程,并使用随机森林进行预测。实验结果显示随机森林具有高准确性,是一种有效的分类方法。
摘要由CSDN通过智能技术生成

 

随机森林

摘要

       随机森林是一种比较新的机器学习模型。随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。

随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。

关键词:随机森林决策树分类算法

 

1实验目的

       编写程序对选择的数据集进行缩放。利用随机森林算法,通过相应代码分割原始样本,分成相应的任务集群。使用算法,来确定算法参数。同时使用随机森林算法,可以为以后更深一步的机器学习打下基础。

2实验数据介绍

        数据来自于一个模拟的美国空军局域网,网络中加了很多模拟的攻击。实验的训练数据为7周的网络流量,这些网络流量包含有约500万条网络连接;实验的测试数据为2周的网络流量,包含有约200万条网络连接。该网络环境中模拟的攻击分为4大类,如下表所示,正常的网络连接标记为normal。

 

标识类型

含义

具体分类标识

 

Normal

正常记录

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值