随机森林
摘要
随机森林是一种比较新的机器学习模型。随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。
随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。
关键词:随机森林;决策树;分类算法
1实验目的
编写程序对选择的数据集进行缩放。利用随机森林算法,通过相应代码分割原始样本,分成相应的任务集群。使用算法,来确定算法参数。同时使用随机森林算法,可以为以后更深一步的机器学习打下基础。
2实验数据介绍
数据来自于一个模拟的美国空军局域网,网络中加了很多模拟的攻击。实验的训练数据为7周的网络流量,这些网络流量包含有约500万条网络连接;实验的测试数据为2周的网络流量,包含有约200万条网络连接。该网络环境中模拟的攻击分为4大类,如下表所示,正常的网络连接标记为normal。
标识类型 |
含义 |
具体分类标识
|
Normal |
正常记录 |