数据挖掘、机器学习
文章平均质量分 80
机器学习,人工智能,数据挖掘,推荐系统算法
斑马!
本科和研究生就读于某普通一本院校的计算机科学与技术专业,目前研究生三年级,暑期实习拿到美团,阿里,京东等大厂offer;秋招拿到了美团,京东,小米等大厂offer。方向是大数据开发工程师,主要做的是离线数仓和实时数仓这块。有想一起学习的小伙伴可以通过博客联系我!
展开
-
数理统计与机器学习
数理统计作业原创 2022-06-02 19:49:15 · 757 阅读 · 0 评论 -
数据挖掘方向研究生常用网站
数据挖掘原创 2022-06-02 15:20:00 · 969 阅读 · 2 评论 -
数据挖掘-序列模式挖掘-PrefixSpan算法(ppt版本)
PrefixSpan算法通俗来讲:前缀prefix就是序列数据前面部分的子序列后缀:对于某一个前缀,序列中除去前缀后面剩下的子序列就是我们的后缀。投影数据库:假设alpha是序列数据库 S的一个序列模式,那么alpha的投影数据库就是它在S 中关于前缀alpha的序列的后缀的集合。投影数据库的支持度:相当于现在beta(beta是一个带前缀alpha的序列)支持度不是再在原始数据库中去找了,而是在alpha的投影数据库里面找了。思想:之前计算某一个(候选)序列的支持度计数原创 2020-07-28 14:17:56 · 645 阅读 · 0 评论 -
数据挖掘-序列模式挖掘-FreeSpan算法总结
一:论文位于: https://www.researchgate.net/publication/221654035_FreeSpan_Frequent_pattern-projected_sequential_pattern_mining 标题:FreeSpan: Frequent pattern projected sequential pattern mining 基于频繁模式投影的序列模式挖掘二:FreeSpan算法 基于频繁模式投影的序列模式挖...原创 2020-07-27 15:38:19 · 1191 阅读 · 0 评论 -
数据挖掘-序列模式挖掘-prefixspan算法(样例)
数据挖掘-序列模式挖掘-prefixspan算法(样例)‘所有结果: 通俗来讲:可以以1-频繁项d为例,我们的思路讲解的很明白;这儿我们一般化我们的求解过程:1)第一次扫描原始数据库,得到长度为1的频繁序列。f_list = {a:4, b:4, c:4, d:3, e:3, f: 3}2)从长度为1的频繁项开始,即从a,b,c,d,e,f开始(注意各个是独立的,分别开始)以a开始为例,第二次扫描原始数据库得到a的投影数据库。对a的投影数据库进行计...原创 2020-07-28 16:53:10 · 563 阅读 · 0 评论 -
图像处理-增强现实-基本概念总结
增强现实第一章基础概念:增强现实是一个新兴的多学科交叉研究领域,它的研究范围非常广泛,包括以下多门技术:信号处理、计算机图形学、图像处理、计算机网络、三维建模技术、三维渲染技术、新型显示器和传感器的开发与设计。一个完善的AR系统包括多个学科研究的技术,其中系统显示技术、跟踪定位技术、虚实融合技术和用户交互技术是实现一个AR系统的基本支撑技术。一般增强现实的显示技术分为以下五类:头盔显示器、投影式 (Project Display)显示技术,手持式(Hand Held Display)显示原创 2020-06-06 23:02:28 · 2269 阅读 · 0 评论 -
数据挖掘-项集挖掘-apriori算法和fp-growth算法(论文核心思想)
如何寻找频繁模式呢? 1.最原始的方法:各个项进行排列组合,即找出所有的候选集,然后再一一判断这些候选集是否是频繁项集。 2.apriori算法:1)核心思想就是集合的超集的支持度一定小于或者集合本身的支持度。 2)候选集的产生过程中的一个技巧:例如两个频繁k-项集(按字典顺序排好的)去组合产生一个(k...原创 2020-04-30 16:51:43 · 700 阅读 · 0 评论 -
数据挖掘-项集挖掘--fpgrowth总结(ppt图片版)
在这篇博客中主要分享一下我制作的关于fp-growth算法的ppt。原创 2020-04-30 16:25:12 · 416 阅读 · 0 评论 -
数据挖掘-序列模式挖掘--GSP算法
一:基本概念介绍序列模式挖掘:指挖掘相对时间或其他模式出现频率高的模式序列模式挖掘的动机:大型连锁超市的交易数据有一系列的用户事物数据库。每一条记录包括用户的ID,事物发生的时间和事物涉及的项目。如果能够在其中挖掘涉及事物间关联关系的模式,即用户几次购买行为间的联系,可以采用更有针对性的营销措施。序列:(sequence) 以SID表示,一个序列即是一个完整的信息流序列符号化表示:...原创 2020-05-03 18:14:52 · 4863 阅读 · 1 评论 -
数据挖掘-课内课程-基础知识迁移
1.最大模式:对于频繁模式p,使得p的任何真超模式都不是频繁的。2.频繁闭项集:是一个频繁的闭的项集,项集c是闭的:如果不存在c的超集c',使得每个包含c的事务也包含c'. 通俗的讲:c的直接超集c'的支持度计数都不等于它本身的支持度计数。举例如下:3.基于约束的关联挖掘4.基于约束的分类:反单调的单调的:简洁约束可转变的约束...原创 2020-05-29 09:15:39 · 670 阅读 · 0 评论 -
数据挖掘-序列模式挖掘-基础知识和概念总结(sequential pattern mining)
一:基础概念介绍序列模式挖掘:指挖掘相对时间或其他模式出现频率高的模式序列模式挖掘的动机:大型连锁超市的交易数据有一系列的用户事物数据库。每一条记录包括用户的ID,事物发生的时间和事物涉及的项目。如果能够在其中挖掘涉及事物间关联关系的模式,即用户几次购买行为间的联系,可以采用更有针对性的营销措施。序列:(sequence) 以SID表示,一个序列即是一个完整的信息流序列符号化表示:...原创 2020-04-20 22:05:16 · 4881 阅读 · 0 评论 -
机器学习,数据挖掘,计算机方面牛人博主链接
1.机器学习,深度学习,概率论DriveC2.机器学习,自然语言处理,深度学习,基础知识AI柠檬3.科学空间,数学,计算机科学科学空间4.廖雪峰官方网站廖雪峰5.数据挖掘(老师推荐)数据挖掘6.AI,机器学习(老师推荐)AI7.机器学习百度的一位牛人8.南京大学周志华机器学习与数据挖掘研究所9.国外数据挖掘牛人数据挖掘...原创 2019-05-04 09:12:23 · 279 阅读 · 0 评论 -
机器学习回归算法整理1
机器学习回归算法整理相关:1.(Coursera maching-learning week1 and week2) 2.以编程提交作业展开论述。 3.个人笔记心得,以项目实践为指导。参考:1,https://www.zybuluo.com/EtoD...原创 2019-01-10 23:15:17 · 431 阅读 · 0 评论 -
DES加密算法
一:理论简介:1.DES是一种最通用的对称密钥算法。(基于密钥的算法通常分为:对称算法和公开密钥算法) (对称性体现在加密密钥能够从解密密钥推算出来,反之亦然) (在大多数对称算法中,加密,解密的密钥是相同的)2.DES的加密解密的密钥是相同的。(可见,对称密钥算法里面的密钥都是保密的)(而公开密钥算法的加密密钥是公开的,解密密钥是保密的)3.D...原创 2019-02-14 20:32:09 · 2148 阅读 · 1 评论 -
机器学习-随机森林-总结及源代码应用(python版)
随机森林摘要 随机森林是一种比较新的机器学习模型。随机森林对多元共线性不敏感,结果对缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量的作用(Breiman 2001b),被誉为当前最好的算法之一(Iverson et al. 2008)。随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于...原创 2020-06-19 09:02:07 · 5466 阅读 · 4 评论 -
算法-智能算法/传统算法-多种算法介绍及异同点
一:描述分治法,贪心算法,动态规划算法,回溯算法,分支限界的基本思想,适用范围和应用1.1分治法1.1.1 基本思想 将规模为n的问题分解为k个规模较小的子问题,使这些子问题相互独立可分别求解,再将k个子问题的解合并成原问题的解.如子问题的规模仍很大,则反复分解直到问题小到可直接求解为止.在分治法中,子问题的解法通常与原问题相同,从而导致递归过程.1.1.2 适用范围 该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题;分解出...原创 2020-06-06 16:06:17 · 2736 阅读 · 0 评论