pytorch学习(4)outgrad与逻辑回归

自动求导

深度学习本质就是不断地去更新权值,而权值的更新去求取梯度,因此梯度的求取是至关重要的。然而求取梯度十分的繁琐。因为pytorch提供了自动求导系统,只需要搭建好前向传播,pytorch会自动求解梯度

自动求导系统

torch.autograd.backward

功能:自动求取梯度

torch.autograd.backward(tensors, 			# 用于求解梯度的张量,比如:loss
						grad_tensors=None,  # 多梯度权重
						retain_graph=None,  # 保存计算图
						create_graph=False  #创建导数计算图,用于高阶求导)

例如:

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

y.backward()
print(w.grad)

输出的结果为:

tensor([5.])

其中调用backward函数本身就是pytorch的自动求导系统,进入这个函数发现其实就是:

torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
1. retain_graph

但是当想要继续进一步求梯度,此时会发生错误。因为pytorch已经将计算图已经释放了。想要继续进一步求解梯度,只要在这里进行更改即可

y.backward(retain_graph=True)

y.backward()
2. grad_tensors

功能:分配多个梯度权重

例如:

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)     # retain_grad()
b = torch.add(w, 1)

y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2

loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
grad_tensors = torch.tensor([1., 2.])

loss.backward(gradient=grad_tensors)    # gradient 传入 torch.autograd.backward()中的grad_tensors

print(w.grad)

输出的结果为:

tensor([9.])

dy0/dw的导数是5dy1/dw的导数2,然后分配的梯度为(1, 2),所以最后的输出结果:5 + 2 * 2 = 9

3.autograd.gard
x = torch.tensor([3.], requires_grad=True)
y = torch.pow(x, 2)     # y = x**2

# 一阶导数
grad_1 = torch.autograd.grad(y, x, create_graph=True)   # grad_1 = dy/dx = 2x = 2 * 3 = 6
print(grad_1)

# 二阶导数
grad_2 = torch.autograd.grad(grad_1[0], x)              # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
print(grad_2)

输出的结果为:

(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)

需要注意的是:create_graph=True,这时才会创建导数计算图,才能计算二阶导数。grad_1[0]这里是因为输出的grad_1是元组,因此需要取出梯度

pytorch进行自动求导的时候有三个地方需要注意:

  • 梯度不自动清零
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

for i in range(4):
	a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    y.backward()
    print(w.grad)
    
    # w.grad.zero_()

输出的结果为:

tensor([5.])
tensor([10.])
tensor([15.])
tensor([20.])

此时梯度并没清零,而是在不断累加。因为若想要清除梯度,需要手动添加w.grad.zero_()

此时输出的结果:

tensor([5.])
tensor([5.])
tensor([5.])
tensor([5.])
  • 依赖于叶子结点的结点,requires_grad默认为True
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

print(a.requires_grad, b.requires_grad, y.requires_grad)

此计算图中,叶子结点只有wx,而ab都依赖这两个叶子结点,因此输出这两个输出都应该为True。同理y的输出也应该是True

输出结果为:

True True True
  • 叶子结点不可执行in_place(原地操作)

原地操作就是在相同的地址中进行操作运算
例如:

a = torch.ones((1, ))
print(id(a), a)

a = a + torch.ones((1, ))
print(id(a), a)
a += torch.ones((1, ))
print(id(a), a)

输出1:

2696554173128 tensor([1.])
2696610773096 tensor([2.])

输出2:

2519500804808 tensor([1.])
2519500804808 tensor([2.])

其中第二个就是原地操作(in_place
例如:

w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

w.add_(1)

y.backward()

输出的结果为:

RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

原因是:在反向传播的过程中,梯度的计算是根据叶子结点的地址进行计算的,保存的是叶子结点的地址,根据地址来寻找数据

逻辑回归

逻辑回归是线性的二分类模型,逻辑回归也叫对数几率回归

  • 线性回归是分析自变量x与因变量y(标量)之间关系的方法
  • 逻辑回归是分析自变量x与因变量y(概率)之间关系的方法

深度学习中模型的构建一般包含:数据、模型、损失函数、优化器以及迭代训练

  • step 1生成数据
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)
  • step 2选择模型
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()   # 实例化逻辑回归模型
  • step 3选择损失函数
loss_fn = nn.BCELoss()
  • step 4选择优化器
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)
  • step 5 模型训练
for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)

    # 计算 loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 清空梯度
    optimizer.zero_grad()

    # 绘图
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值