pytorch学习(2)张量的操作与线性回归

张量操作

一、张量拼接与切分

  1. torch.cat()

功能:将张量按照维度dim进行拼接

torch.cat(tensors,	    # 张量序列
		  dim=0,		# 要拼接的维度
		  out=None)

例如:按照张量的第0维和第1维进行拼接

t = torch.ones((2, 3))

t_0 = torch.cat([t, t], dim=0)
t_1 = torch.cat([t, t, t], dim=1)

print("t_0:{} shape:{}\nt_1:{} shape:{}".format(t_0, t_0.shape, t_1, t_1.shape))

输出的结果:

t_0:tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]]) shape:torch.Size([4, 3])
t_1:tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1.],
        [1., 1., 1., 1., 1., 1., 1., 1., 1.]]) shape:torch.Size([2, 9])

通过观察输出可知:第0维拼接:2+2,第1维拼接:3+3+3

  1. torch.stack

功能:在新创建的维度dim上进行拼接

torch.stack(tensors,	    # 张量序列
		    dim=0,		# 要拼接的维度
		    out=None)

例如:

t = torch.ones((2, 3))

t_stack = torch.stack([t, t, t], dim=0)

print("\nt_stack:{} shape:{}".format(t_stack, t_stack.shape))

输出的结果为:

t_stack:tensor([[[1., 1., 1.],
         [1., 1., 1.]],

        [[1., 1., 1.],
         [1., 1., 1.]],

        [[1., 1., 1.],
         [1., 1., 1.]]]) shape:torch.Size([3, 2, 3])

通过观察输出可以发现其实就是在原有的(2, 3)维度的基础上创建一个第0维度,变成(1, 2, 3),然后再进行拼接从而输出(3, 2, 3)

  1. torch.chunk()

功能:将张量按维度dim进行平均切分
返回值:张量列表
注意事项:若不能整除,最后一份张量小于其他张量

torch.chunk(input,		# 要切分的张量
			chunks,		# 要切分的份数
			dim=0		# 要切分的维度
			)

例如:

a = torch.ones((2, 7))  # 7
list_of_tensors = torch.chunk(a, dim=1, chunks=3)   # 3

for idx, t in enumerate(list_of_tensors):
	print("第{}个张量:{}, shape is {}".format(idx+1, t, t.shape))

输出的结果为:

第1个张量:tensor([[1., 1., 1.],
        [1., 1., 1.]]), shape is torch.Size([2, 3])
第2个张量:tensor([[1., 1., 1.],
        [1., 1., 1.]]), shape is torch.Size([2, 3])
第3个张量:tensor([[1.],
        [1.]]), shape is torch.Size([2, 1])

输入的是7列的张量,然后按照列维度切分为3块,即:3、3、1

  1. torch.split()

功能:将张量按照维度dim进行切分
返回值:张量的列表

torch.split(tensor, 				# 要切分的张量
			split_size_or_sections, # 为int时,表示每一份的长度;为list,按list元素切分
			dim=0 					# 要切分的维度
			)

例如:

list_of_tensors = torch.split(t, [2, 1, 2], dim=1)
    for idx, t in enumerate(list_of_tensors):
        print("第{}个张量:{}, shape is {}".format(idx, t, t.shape))

输出的结果:

第0个张量:tensor([[1., 1.],
        [1., 1.]]), shape is torch.Size([2, 2])
第1个张量:tensor([[1.],
        [1.]]), shape is torch.Size([2, 1])
第2个张量:tensor([[1., 1.],
        [1., 1.]]), shape is torch.Size([2, 2])

按照列表中的2、1、2进行切分,数字一定要对应2+1+2=5,不等会出现问题

二、张量索引

  1. torch.index_select()

功能:在维度dim上,按index索引数据
返回值:依index索引数据拼接的张量

torch.index_select(input, # 要索引的张量
				   dim,   # 要索引的维度
				   index, # 要索引数据的序号
				   out=None
)

例如:

t = torch.randint(0, 9, size=(3, 3))
idx = torch.tensor([0, 2], dtype=torch.long)    # float
t_select = torch.index_select(t, dim=0, index=idx)
print("t:\n{}\nt_select:\n{}".format(t, t_select))

输出的结果:

t:
tensor([[4, 5, 0],
        [5, 7, 1],
        [2, 5, 8]])
t_select:
tensor([[4, 5, 0],
        [2, 5, 8]])

通过观察输出可知:index这里索引的需要是张量形式的,且一定要注意输出的格式为:torch.long类型的输出形式,float类型会出现报错

  1. torch.masked_select()

功能:按mask中的True进行索引
返回值:一维张量

torch.masked_select(input, # 要求索引的张量
					mask, # 与input同形状的布尔类型张量
					out=None)

例如:

t = torch.randint(0, 9, size=(3, 3))
mask = t.le(5)  # ge is mean greater than or equal/   gt: greater than  le  lt
t_select = torch.masked_select(t, mask)
print("t:\n{}\nmask:\n{}\nt_select:\n{} ".format(t, mask, t_select))

输出的结果为:

t:
tensor([[4, 5, 0],
        [5, 7, 1],
        [2, 5, 8]])
mask:
tensor([[ True,  True,  True],
        [ True, False,  True],
        [ True,  True, False]])
t_select:
tensor([4, 5, 0, 5, 1, 2, 5]) 

最后的输出中>5的数会直接筛选出去,变成一个一维的张量

三、张量变换

  1. torch.reshape()

功能:变换张量形状
注意事项:当张量在内存中是连续的时,新张量与input共享数据内存

torch.reshape(input,
			  shape # 新张量的形状
)

例如:

t = torch.randperm(8)
t_reshape = torch.reshape(t, (-1, 2, 2))    # -1
print("t:{}\nt_reshape:\n{}".format(t, t_reshape))

t[0] = 1024
print("t:{}\nt_reshape:\n{}".format(t, t_reshape))
print("t.data 内存地址:{}".format(id(t.data)))
print("t_reshape.data 内存地址:{}".format(id(t_reshape.data)))

输出的结果为:

t:tensor([5, 4, 2, 6, 7, 3, 1, 0])
t_reshape:
tensor([[[5, 4],
         [2, 6]],

        [[7, 3],
         [1, 0]]])
t:tensor([1024,    4,    2,    6,    7,    3,    1,    0])
t_reshape:
tensor([[[1024,    4],
         [   2,    6]],

        [[   7,    3],
         [   1,    0]]])
t.data 内存地址:1611608930888
t_reshape.data 内存地址:1611608930888

通过观察输出可以发现,更改张量形状之后,地址并没发生变化

  1. torch.transpose

功能:变换张量的两个维度

torch.transpose(input,
				dim0,  # 要交换的维度
				dim1   # 要交换的维度
)

例如:将张量的第二维度和第三维度进行交换

# torch.transpose
t = torch.rand((2, 3, 4))
t_transpose = torch.transpose(t, dim0=1, dim1=2)    # c*h*w     h*w*c
print("t shape:{}\nt_transpose shape: {}".format(t.shape, t_transpose.shape))

输出的结果为:

t shape:torch.Size([2, 3, 4])
t_transpose shape: torch.Size([2, 4, 3])
  1. torch.t()

功能:2维张量进行转置,对矩阵而言,等价于torch.transpose(input, 0, 1)

  1. torch.squeeze()

功能:压缩长度为1的维度(轴)

torch.squeeze(input,
			  dim=None,
			  out=None)

注:dim:若为None,移除所有长度为1的轴;若指定维度,当且仅当该轴长度为1时,可以被移除

t = torch.rand((1, 2, 3, 1))
t_sq = torch.squeeze(t)
t_0 = torch.squeeze(t, dim=0)
t_1 = torch.squeeze(t, dim=1)
print(t.shape)
print(t_sq.shape)
print(t_0.shape)
print(t_1.shape)

输出的结果为:

torch.Size([1, 2, 3, 1])
torch.Size([2, 3])
torch.Size([2, 3, 1])
torch.Size([1, 2, 3, 1])
  1. torch.usqueeze()

功能:依据dim扩展维度

torch.usqueeze(input,
			   dim,  # 扩展的维度
			   out=None)

四、张量数学运算

  1. 加减乘除
torch.add()
torch.addcdiv()
torch.addcmul()
torch.sub()
torch.div()
torch.mul()

例如:

t_0 = torch.randn((3, 3))
t_1 = torch.ones_like(t_0)
t_add = torch.add(t_0, 10, t_1)

输出的结果:

t_0:
tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.4519, -0.1661],
        [-1.5228,  0.3817, -1.0276]])
t_1:
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]])
t_add_10:
tensor([[10.6614, 10.2669, 10.0617],
        [10.6213,  9.5481,  9.8339],
        [ 8.4772, 10.3817,  8.9724]])

  1. 对数、指数、幂函数
torch.log(input, out=None)
torch.log10(input, out=None)
torch.log2(input, out=None)
torch.exp(input, out=None)
torch.pow()
  1. 三角函数
torch.abs(input, out=None)
torch.acos(input, out=None)
torch.cosh(input, out=None)
torch.cos(input, out=None)
torch.asin(input, out=None)
torch.atan(input, out=None)
torch.atan2(input, other, out=None)

线性回归

lr = 0.05  # 学习率

# 创建训练数据
x = torch.rand(20, 1) * 10  # x data (tensor), shape=(20, 1)
y = 2*x + (5 + torch.randn(20, 1))  # y data (tensor), shape=(20, 1)

# 构建线性回归参数
w = torch.randn((1), requires_grad=True)
b = torch.zeros((1), requires_grad=True)

for iteration in range(1000):

    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()

    # 反向传播
    loss.backward()

    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

    # 清零张量的梯度
    w.grad.zero_()
    b.grad.zero_()

    # 绘图
    if iteration % 20 == 0:

        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), y_pred.data.numpy(), 'r-', lw=5)
        plt.text(2, 20, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
        plt.xlim(1.5, 10)
        plt.ylim(8, 28)
        plt.title("Iteration: {}\nw: {} b: {}".format(iteration, w.data.numpy(), b.data.numpy()))
        plt.pause(0.5)

        if loss.data.numpy() < 1:
            break

编程的思路很好理解,就是创建一个2x+5的函数取样,在它的基础上增加噪声,从而生成数据集。然后用模型去拟合这个函数的曲线。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值