【分类网络】LeNet

代码地址

https://github.com/YFR718/Pytorch_Ai

背景

lecun大佬最早对手写数字进行识别,1980年代。

网络结构

在这里插入图片描述
1.第一层C1是一个卷积层
输入图片: 32 * 32
卷积核大小: 5 * 5
卷积核种类: 6
输出feature map大小:2828(32-5+1)
神经元数量:28 * 28 * 6
可训练参数数量:(5 * 5+1) * 6,(每个卷积核25个权重值w,一个截距值bias;总共6个卷积核)
连接数量:(5 * 5+1)628
28

2.第二层S2是一个下采样层(池化层):
输入:28 * 28
采样区域:2 * 2
采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置,结果通过sigmoid。(论文原文是这样描述,但是实际中,我看到一般都是用最大池化)
种类数量:6
输出的feature map大小时:14 * 14(28/2)
神经元数量:14 * 14 * 6
可训练参数:2 * 6(和的权重w和偏置bias,然后乘以6)
连接数:(2 * 2+1)*6 * 14 * 14

3.第三层C3也是一个卷积层
输入:S2中所有6个或者几个特征的map组合,这个组合并无太大实际意义,受限于当时的硬件水平,才这样组合
卷积核大小:5 * 5
卷积核种类:16
输出feature map大小:10 * 10
C3中的每个特征map是连接到S2中的所有6个或者几个特征map的,表示本层的特征map是上一层提取到的
特征map的不同组合,存在的一个方式是:C3的前6个特征图以S2中3个相邻的特征图子集为输入。接下来
6个特征图以S2中4个相邻特征图子集为输入。然后的3个以不相邻的4个特征图子集为输入。最后一个
将S2中所有特征图为输入。此时可训练参数:6 * (3 * 25+1)+6 * (4 * 25+1)+3 * (4 * 25+1)+(25 * 6+1)=1516
连接数:10 * 10 * 1516=151600

4.第四层S4是一个下采样层(池化层)
输入:10 * 10
采样区域:2 * 2
采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置,结果通过sigmoid
采样种类:16
输出feature map大小:5*5(10/2)
神经元数量:5 * 5 * 16=400
可训练参数:2 * 16=32(和的权重2+偏置bias,乘以16)
连接数:16 * (2 * 2+1) * 5 * 5=2000

5.第五层C5是一个卷积层(论文原文的描述)
输入:S4层的全部16个单元特征map(与S4全连接)
卷积核大小:5 * 5
卷积核种类:120
输出feature map大小:1 * 1
可训练参数/连接数:120 * (16 * 5*5+1)=48120

6.第六层F6层全连接层
输入:C5 120维向量
计算方式:计算输入向量和权重向量之间的点积,再加上一个偏置,结果通过sigmoid函数
可训练参数:84*(120+1)=10164
在这里插入图片描述

import torch.nn as nn
import torch

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet,self).__init__()
        self.conv = nn.Sequential(
            # 32,32,1
            nn.Conv2d(1,6,kernel_size=5),
            # 28,28,6
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            # 14,14,6
            nn.Conv2d(6,16,kernel_size=5),
            # 10,10,16
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            # 5,5,16
        )
        self.liner = nn.Sequential(
            nn.Linear(5*5*16,120),
            nn.ReLU(inplace=True),
            nn.Linear(120,84),
            nn.ReLU(inplace=True),
            nn.Linear(84,10),
        )

    def forward(self,x):
        x = self.conv(x)
        x = x.view(x.size()[0], -1)
        x = self.liner(x)
        return x


from torchsummary import summary
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LeNet().to(device)
summary(model, input_size=(1, 32, 32))


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LeNet是一个经典的神经网络架构,最初用于手写数字的识别。但是,可以用它来搭建任何分类模型,包括奥特曼分类。下面是使用LeNet搭建奥特曼分类的步骤: 1.准备数据集 首先,需要准备奥特曼的图像数据集,其中应包括奥特曼的各种姿势和形态。可以使用ImageNet等公共数据集,也可以自己收集数据。 2.数据预处理 数据预处理是神经网络训练的重要步骤之一。对于奥特曼分类,预处理包括图像的缩放、归一化和转换为灰度图像等。 3.搭建LeNet模型 LeNet模型由卷积层、池化层和全连接层组成。对于奥特曼分类,可以使用以下模型: ```python import torch import torch.nn as nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x ``` 这个模型由两个卷积层和两个全连接层组成。每个卷积层后面都有一个池化层,以减少特征图的大小。 4.训练模型 使用PyTorch训练模型的步骤包括定义优化器、定义损失函数、迭代训练数据集等。以下是一个简单的训练函数: ```python def train(model, train_loader, optimizer, criterion, device): model.train() running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 ``` 5.评估模型 评估模型的步骤包括使用测试数据集计算模型的准确率、精度、召回率等指标。以下是一个简单的评估函数: ```python def evaluate(model, test_loader, device): model.eval() correct = 0 total = 0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % ( 100 * correct / total)) ``` 6.调整模型 如果模型的性能不够好,可以通过调整超参数、增加数据集等方式来提升模型的性能。 通过以上步骤,可以使用LeNet搭建奥特曼分类模型,并对其进行训练和评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值