编辑于2019/02/23,转载请注明
一、下载 Anaconda
直接在官网下载安装包,可能速度比较慢,可以从清华镜像上下载, 选择Anaconda2或者3,下载完成后直接安装。
二、安装环境
# 查看帮助
conda -h
# 创建一个名字为python27的环境,并安装python2.7版本
conda create --name python27 python=2.7
# 也可以改成python3.6,或者再加一个tensorflow-gpu 1.10
conda create --name python27 python=2.7 tensorflow-gpu=1.10
# 激活此环境(conda 3.8示例)
conda activate python36 #ubuntu
# conda 3.8版本显示用 conda activate 环境名
# 再来检查python版本,显示是 3.6
python -V
# 退出当前环境(conda 3.8示例)
conda deactivate
# 删除该环境
conda remove -n python36 --all
# 或者
conda env remove -n python36
# 查看所以安装的环境
conda info -e
python36 * D:\Programs\Anaconda3\envs\python36
root D:\Programs\Anaconda3
三、包的安装和更新
conda 的包安装命令
conda install xxx
和pip类似,不过有个好处就是会连依赖一起装,确定只想装单个包,可以选择 pip 来安装,建议进了环境装。
如果不知道要找的包的确切名称,可以使用搜索
conda search search_term
例如,我知道我想安装numpy,但我不清楚确切的包名称。我可以这样尝试:
conda search num
安装、查看、更新、删除命令如下
# 安装 matplotlib
conda install matplotlib
# 查看已安装的包
conda list
# 包更新
conda update matplotlib
# 删除包
conda remove matplotlib
注意,现有版本较高,想要降级的话,我记得可以指定版本安装,pip install numpy==1.14.5,会自动卸载原来的,然后重新安装
Anaconda 的镜像地址默认在国外,用 conda 安装包的时候会很慢,可以用国内镜像源地址,如清华大学的。
使用命令临时从镜像安装
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
或者手动修改 ~/.condarc (Linux/Mac) 或 C:\Users\当前用户名\.condarc (Windows) 配置:
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
auto_activate_base: false #默认不进入虚拟环境
安装的时候可以选择自定义的通道pytorch,就会在pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud中寻找可用的pytorch版本了:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch
如果没有.condarc文件的话,win10用powershell可以创建:
C:\Users\你的用户名> New-Item .condarc
如果使用conda安装包的时候还是很慢,那么可以考虑使用pip来安装,同样把 pip 的镜像源地址也改成国内的,如豆瓣源。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple
或者修改 ~/.pip/pip.conf (Linux/Mac) 或 C:\Users\当前用户名\pip\pip.ini (Windows) 配置:
[global]
trusted-host = pypi.douban.com
index-url = http://pypi.douban.com/simple
附:
conda国内源
清华镜像:
Index of /anaconda/pkgs/free/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
Index of /anaconda/cloud/msys2/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror
中科大镜像:
Index of /anaconda/pkgs/main/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror
Index of /anaconda/pkgs/free/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror
Index of /anaconda/cloud/msys2/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror
Index of /anaconda/cloud/bioconda/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror
Index of /anaconda/cloud/menpo/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror
pip国内源
新版ubuntu要求使用https源,要注意。
清华:https://pypi.tuna.tsinghua.edu.cn/simple/
阿里云:Simple Index
中国科技大学:Simple Index
华中理工大学:http://pypi.hustunique.com/
山东理工大学:http://pypi.sdutlinux.org/
豆瓣:Simple Index