Anaconda使用介绍

编辑于2019/02/23,转载请注明

一、下载 Anaconda

直接在官网下载安装包,可能速度比较慢,可以从清华镜像上下载, 选择Anaconda2或者3,下载完成后直接安装。

二、安装环境

# 查看帮助
conda -h
# 创建一个名字为python27的环境,并安装python2.7版本
conda create --name python27 python=2.7
# 也可以改成python3.6,或者再加一个tensorflow-gpu 1.10
conda create --name python27 python=2.7 tensorflow-gpu=1.10
# 激活此环境(conda 3.8示例)
conda activate python36 #ubuntu
# conda 3.8版本显示用 conda activate 环境名
# 再来检查python版本,显示是 3.6
python -V 
# 退出当前环境(conda 3.8示例)
conda deactivate
# 删除该环境
conda remove -n python36 --all
# 或者
conda env remove  -n python36
# 查看所以安装的环境
conda info -e
python36              *  D:\Programs\Anaconda3\envs\python36
root                     D:\Programs\Anaconda3

三、包的安装和更新

conda 的包安装命令

conda install xxx

和pip类似,不过有个好处就是会连依赖一起装,确定只想装单个包,可以选择 pip 来安装,建议进了环境装。

如果不知道要找的包的确切名称,可以使用搜索

conda search search_term

例如,我知道我想安装numpy,但我不清楚确切的包名称。我可以这样尝试:

conda search num

安装、查看、更新、删除命令如下

# 安装 matplotlib 
conda install matplotlib
# 查看已安装的包
conda list 
# 包更新
conda update matplotlib
# 删除包
conda remove matplotlib

注意,现有版本较高,想要降级的话,我记得可以指定版本安装,pip install numpy==1.14.5,会自动卸载原来的,然后重新安装

Anaconda 的镜像地址默认在国外,用 conda 安装包的时候会很慢,可以用国内镜像源地址,如清华大学的。

使用命令临时从镜像安装

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

或者手动修改 ~/.condarc (Linux/Mac) 或 C:\Users\当前用户名\.condarc (Windows) 配置:

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

auto_activate_base: false #默认不进入虚拟环境

 安装的时候可以选择自定义的通道pytorch,就会在pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud中寻找可用的pytorch版本了:

conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch

如果没有.condarc文件的话,win10用powershell可以创建:

C:\Users\你的用户名> New-Item .condarc

如果使用conda安装包的时候还是很慢,那么可以考虑使用pip来安装,同样把 pip 的镜像源地址也改成国内的,如豆瓣源。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple

或者修改 ~/.pip/pip.conf (Linux/Mac) 或 C:\Users\当前用户名\pip\pip.ini (Windows) 配置:

[global]
trusted-host =  pypi.douban.com
index-url = http://pypi.douban.com/simple

附:

conda国内源

清华镜像:

Index of /anaconda/pkgs/free/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

Error

Index of /anaconda/cloud/msys2/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

中科大镜像:

Index of /anaconda/pkgs/main/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror

Index of /anaconda/pkgs/free/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror

Error

Index of /anaconda/cloud/msys2/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror

Index of /anaconda/cloud/bioconda/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror

Index of /anaconda/cloud/menpo/ | 北京外国语大学开源软件镜像站 | BFSU Open Source Mirror

pip国内源

新版ubuntu要求使用https源,要注意。

清华:https://pypi.tuna.tsinghua.edu.cn/simple/

阿里云:Simple Index

中国科技大学:Simple Index

华中理工大学:http://pypi.hustunique.com/

山东理工大学:http://pypi.sdutlinux.org/ 

豆瓣:Simple Index

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值