本文为知网收录仅供参考,本人只是由于目前在学习相关知识,所以先查找国内文献进行学习和总结。侵权立删。
文章引用:
[1]文成林,吕菲亚,包哲静,刘妹琴.基于数据驱动的微小故障诊断方法综述[J].自动化学报,2016,42(09):1285-1299.
故障诊断综述的方法:
基于统计分析方法
刻画并利用变量之间的相关性,适用于高维系统的故障检测与诊断
PCA:
优点:分析处理具有高度线性相关性的测量数据,降维;可以反映检测变量的主要变化,残差子控件反映检测过程的噪声和干扰
缺点:(1)假设数据服从高斯分布,然而数据未必服从高斯分布。(2)传统PCA属于混合潜变量分析,不能直接处理非线性和多模态问题 (3)PCA采用T²和SPE等统计量作为评价指标扩大检测区域,不能很好描述正常数据分布。
ICA:
优点:针对于具有非正态分布的多变量系统提出;当感兴趣信号的能量和强度相比其他信号较弱时,这种转换比PCA更有效;提取互相独立的主元变量;提取高阶统计量信息
缺点:但要求数据在时间序列上独立,但是工业数据采集大都依据时间采样,这就忽视了故障数据在时间上的相关性。
PLS: