Python实现感知器

本文详细介绍了如何使用Python和NumPy库实现感知器算法,这是一种早期的机器学习模型,用于简单的线性可分问题。通过实例代码,展示了感知器的训练过程和预测功能。
摘要由CSDN通过智能技术生成
import numpy as np

x1 = np.array([0, 0, 1, 1])
x2 = np.array([0, 1, 0, 1])
y = np.array([0, 0, 0, 1])  # 与
y1 = np.array([0, 1, 1, 1])  # 或
# 权重
w0 = -0.8
w1 = 0.4
w2 = 0.5
# 学习率
a = 0.001


# 阶跃函数
def sum(x1, x2):
    return w1 * x1 + w2 * x2 + w0


# 激活函数
def h(x1, x2):
    if sum(x1, x2) > 0:
        return 1
    else:
        return 0


# and运算循环500次,保证足够大能迭代到极限
for i in range(500):
    w0 = w0 - (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * a  # 迭代权重值 在列表中用完一组4数字就重复
    w1 = w1 - (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x1[i % 4] * a
    w2 = w2 - (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x2[i % 4] * a
    # 如果偏导小于0.001,输出此时权重及偏导 条件判断,偏导趋于零
    if (abs(sum(x1[i % 4], x2[i % 4]) - y[i % 4]) < 0.001 and abs(
            (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x1[i % 4]) < 0.001 and abs(
        (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x2[i % 4]) < 0.01):
        print("权重" + str(w0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值