import numpy as np
x1 = np.array([0, 0, 1, 1])
x2 = np.array([0, 1, 0, 1])
y = np.array([0, 0, 0, 1]) # 与
y1 = np.array([0, 1, 1, 1]) # 或
# 权重
w0 = -0.8
w1 = 0.4
w2 = 0.5
# 学习率
a = 0.001
# 阶跃函数
def sum(x1, x2):
return w1 * x1 + w2 * x2 + w0
# 激活函数
def h(x1, x2):
if sum(x1, x2) > 0:
return 1
else:
return 0
# and运算循环500次,保证足够大能迭代到极限
for i in range(500):
w0 = w0 - (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * a # 迭代权重值 在列表中用完一组4数字就重复
w1 = w1 - (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x1[i % 4] * a
w2 = w2 - (sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x2[i % 4] * a
# 如果偏导小于0.001,输出此时权重及偏导 条件判断,偏导趋于零
if (abs(sum(x1[i % 4], x2[i % 4]) - y[i % 4]) < 0.001 and abs(
(sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x1[i % 4]) < 0.001 and abs(
(sum(x1[i % 4], x2[i % 4]) - y[i % 4]) * x2[i % 4]) < 0.01):
print("权重" + str(w0
Python实现感知器
最新推荐文章于 2024-11-10 13:43:20 发布
本文详细介绍了如何使用Python和NumPy库实现感知器算法,这是一种早期的机器学习模型,用于简单的线性可分问题。通过实例代码,展示了感知器的训练过程和预测功能。
摘要由CSDN通过智能技术生成