衍射
求单缝衍射波长
δ = a ⋅ x f = { ± k λ , ( k = 1 , 2 , 3 … ) 暗纹 ± ( 2 k + 1 ) λ 2 ( k = 1 , 2 , 3 … ) 明纹 0 中央明纹 \delta=a·\frac x f=\begin{cases} \pm k\lambda,(k=1,2,3\ldots) 暗纹\\ \pm(2k+1)\frac \lambda 2(k=1,2,3\ldots) 明纹\\ 0 中央明纹 \end{cases} δ=a⋅fx=⎩ ⎨ ⎧±kλ,(k=1,2,3…)暗纹±(2k+1)2λ(k=1,2,3…)明纹0中央明纹
求单缝衍射中央明纹宽度
l = 2 f λ a l=2f\frac \lambda a l=2faλ
求单缝衍射的半波带数
第 k k k级明纹对应半波带数: 2 k + 1 2k+1 2k+1
第 k k k级暗纹对应半波带数: 2 k 2k 2k
求光栅呈现的明条纹有多少级
若光以与水平面夹角为 φ \varphi φ的角度入射,则
δ 1 = ( a + b ) ∣ s i n θ − s i n φ ∣ = k λ ( k = 0 , 1 , 2 … 且 − 9 0 。 < θ < 9 0 。 ) \delta_1=(a+b)|sin\theta-sin\varphi|=k\lambda(k=0,1,2\ldots且-90^。<\theta<90^。) δ1=(a+b)∣sinθ−sinφ∣=kλ(k=0,1,2…且−90。<θ<90。)
并且会在 k = a + b a k ′ ( k ′ = 1 , 2 , 3 … ) k=\frac{a+b}{a}k^{'}(k^{'}=1,2,3\ldots) k=aa+bk′(k′=1,2,3…)处缺级。
求光栅常数
缺级: k = a + b a k ′ ( k ′ = 1 , 2 , 3 … ) k=\frac{a+b}{a}k^{'}(k^{'}=1,2,3 \ldots) k=aa+bk′(k′=1,2,3…)
求光栅屏上某级明纹距离中心的距离
x = t a n θ x=tan\theta x=tanθ,其中 ( a + b ) ∣ s i n θ − s i n φ ∣ = k λ ( k = 级数 ) (a+b)|sin\theta-sin\varphi|=k\lambda(k=级数) (a+b)∣sinθ−sinφ∣=kλ(k=级数)
干涉
求双缝干涉在第几级明纹中心/暗纹中心处的光程差
k k k级明纹中心的光程差:
δ = k λ ( k = 0 , 1 , 2 … ) \delta=k\lambda(k=0,1,2\ldots) δ=kλ(k=0,1,2…)
k k k级暗纹中心的光程差:
δ = ( k − 0.5 ) λ ( k = 1 , 2 … ) \delta=(k-0.5)\lambda(k=1,2\ldots) δ=(k−0.5)λ(k=1,2…)
λ 为波长 \lambda 为 波长 λ为波长
当 k = 0 k=0 k=0时,零级明纹中心(中央明纹)
求双缝干涉在某位置处的光程差
δ = d ⋅ x D \delta=d·\frac xD δ=d⋅Dx
判断双缝干涉在某位置处是啥纹
当 x x x处是明纹中心:
k = d ⋅ x D ⋅ λ k=\frac{d·x}{D·\lambda} k=D⋅λd⋅x(为整数)
当 x x x处是暗纹中心时:
d ⋅ x D ⋅ λ = k − 0.5 \frac {d·x} {D·\lambda}=k-0.5 D⋅λd⋅x=k−0.5(为几点五)
已知双缝干涉中两个纹中心的距离,求入射光波长
暗纹: λ = d ⋅ Δ x D ( k 1 − k 2 ) \lambda=\frac{d·\Delta x}{D(k_1-k_2)} λ=D(k1−k2)d⋅Δx
明纹: d ⋅ Δ x D = ( k 1 − k 2 + 0.5 ) λ d·\frac{\Delta x}{D}=(k_1-k_2+0.5)\lambda d⋅DΔx=(k1−k2+0.5)λ
双缝干涉中,改变入射光后,新的某纹中心与旧的某纹中心,求新光波长
δ 新纹中心 = δ 旧纹中心 \delta_{新纹中心}=\delta_{旧纹中心} δ新纹中心=δ旧纹中心
双缝干涉中,用云母覆盖某缝后,新的某纹中心与旧的某纹中心重合,求云母厚度
δ 云母覆盖前 − δ 云母覆盖后 = ( 1 − n ) l \delta_{云母覆盖前}-\delta_{云母覆盖后}=(1-n)l δ云母覆盖前−δ云母覆盖后=(1−n)l
计算薄膜干涉的光程差
波长为 λ \lambda λ的光从折射率为 n 1 n_1 n1的介质中以与竖直方向夹角为 θ \theta θ的角度射入折射率为 n 2 n_2 n2的薄膜中,薄膜另一侧介质折射率为 n 3 n_3 n3
观察的光是 | m 1 , n 2 , n 3 是否依次增大或减小 m_1,n_2,n_3是否依次增大或减小 m1,n2,n3是否依次增大或减小 | 光程差 δ \delta δ |
---|---|---|
反射光 | 是 | 2 e n 2 2 − n 1 2 s i n 2 θ 2e\sqrt{n_2^2-n_1^2sin^2\theta} 2en22−n12sin2θ |
不是 | 2 e n 2 2 − n 1 2 s i n 2 θ + λ 2 2e\sqrt{n_2^2-n_1^2sin^2\theta}+\frac \lambda 2 2en22−n12sin2θ+2λ | |
折射光 | 是 | 2 e n 2 2 − n 1 2 s i n 2 θ + λ 2 2e\sqrt{n_2^2-n_1^2sin^2\theta+\frac \lambda 2} 2en22−n12sin2θ+2λ |
不是 | 2 e n 2 2 − n 1 2 s i n 2 θ 2e\sqrt{n_2^2-n_1^2sin^2\theta} 2en22−n12sin2θ |
判断薄膜干涉是明纹还是暗纹
明纹: δ = l λ ( k = 0 , 1 , 2 … ) \delta=l\lambda(k=0,1,2\ldots) δ=lλ(k=0,1,2…)
暗纹: δ = 2 k + 1 2 λ ( l = 0 , 1 , 2 … ) \delta=\frac {2k+1}{2}\lambda(l=0,1,2\ldots) δ=22k+1λ(l=0,1,2…)
判断薄膜呈什么颜色
颜色 | 紫 | 蓝 | 绿 |
---|---|---|---|
λ ( n m ) \lambda(nm) λ(nm) | 390 − 500 390~-500 390 −500 | 450 − 500 450~-500 450 −500 | 500 − 800 500~-800 500 −800 |
颜色 | 黄 | 橙 | 红 |
λ ( n m ) \lambda(nm) λ(nm) | 580 − 600 580~-600 580 −600 | 600 − 620 600~-620 600 −620 | 620 − 750 620~-750 620 −750 |
计算劈尖干涉的细丝直径
光的波长为 λ \lambda λ,劈尖上表面、中间介质、下表面的折射率分别是 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3。
细丝处为 | n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3是否依次增大或减小 | 细丝直径 |
---|---|---|
明纹中心 | 是 | d = ( k − 1 ) λ 2 n 2 d=\frac{(k-1)\lambda}{2n_2} d=2n2(k−1)λ |
不是 | d = ( k − 1 2 ) λ x n 2 d=\frac{(k-\frac 12)\lambda}{xn_2} d=xn2(k−21)λ | |
暗纹中心 | 是 | d = ( k − 1 2 ) λ 2 n 2 d=\frac{(k-\frac 12)\lambda}{2n_2} d=2n2(k−21)λ |
不是 | d = ( k − 1 ) λ 2 n 2 d=\frac{(k-1)\lambda}{2n_2} d=2n2(k−1)λ |
已知多条明纹/暗纹间距,求细丝直径
已知光的波长为 λ \lambda λ
a a a条明纹/暗纹间距为 Δ x \Delta x Δx
劈尖中间介质折射率为 n 2 n_2 n2
细丝与劈尖棱边距离为 D D D
则细丝直径 d = ( a − 1 ) λ D 2 n 2 Δ x d=\frac{(a-1)\lambda D}{2n_2\Delta x} d=2n2Δx(a−1)λD
根据条纹疏密变化,判断细丝直径变化
条纹靠近细丝移动 → \to →厚度减小
条纹远离细丝移动 → \to →厚度增大
计算牛顿环第 k k k个明环/暗环处介质厚度及环半径
光的波长为 λ \lambda λ,牛顿环上面的透镜的曲率半径为 R R R
牛顿环上面的透镜,中间的透明介质,下面的玻璃的折射率分别是 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3,细丝直径 e e e
指定的位置 | n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3是否依次增大或减小 | 介质厚度 e e e | 环半径 r r r |
---|---|---|---|
第 k k k个明环处 | 是 | e = k λ 2 n 2 ( k = 0 , 1 , 2 … ) e=\frac{k\lambda}{2n_2}(k=0,1,2\ldots) e=2n2kλ(k=0,1,2…) | r = 2 R e r=\sqrt{2Re} r=2Re |
不是 | e = ( k − 1 2 ) λ 2 n 2 ( k = 1 , 2 , 3 … ) e=\frac{(k-\frac 12)\lambda}{2n_2}(k=1,2,3\ldots) e=2n2(k−21)λ(k=1,2,3…) | r = 2 R e r=\sqrt{2Re} r=2Re | |
第 k k k个暗环处 | 是 | e = ( k − 1 2 ) λ 2 n 2 ( k = 1 , 2 , 3 … ) e=\frac{(k-\frac 12)\lambda}{2n_2}(k=1,2,3\ldots) e=2n2(k−21)λ(k=1,2,3…) | r = 2 R e r=\sqrt{2Re} r=2Re |
不是 | e = k λ 2 n 2 ( k = 0 , 1 , 2 … ) e=\frac{k\lambda}{2n_2}(k=0,1,2\ldots) e=2n2kλ(k=0,1,2…) | r = 2 R e r=\sqrt{2Re} r=2Re |
偏振
求光通过偏振片后的光强
若光强为 I 0 I_0 I0的自然光通过几块偏振片,则:
通过第一个偏振片后的光强为 I 1 = 1 2 I 0 I_1=\frac 1 2I_0 I1=21I0
通过第二个偏振片后的光强为 I 2 = I 1 c o s 2 α 1 , 2 ( α 1 , 2 是第一个偏振片与第二个偏振片偏振方向的夹角 ) I_2=I_1cos^2\alpha_{1,2}(\alpha_{1,2}是第一个偏振片与第二个偏振片偏振方向的夹角) I2=I1cos2α1,2(α1,2是第一个偏振片与第二个偏振片偏振方向的夹角)
通过第二个偏振片后的光强为 I 3 = I 2 c o s 2 α 2 , 3 ( α 2 , 3 是第二个偏振片与第三个偏振片偏振方向的夹角 ) I_3=I_2cos^2\alpha_{2,3}(\alpha_{2,3}是第二个偏振片与第三个偏振片偏振方向的夹角) I3=I2cos2α2,3(α2,3是第二个偏振片与第三个偏振片偏振方向的夹角)
.
.
.
通过第 n n n个偏振片后的光强为 I n = I n − 1 c o s 2 α a n − 1 , n ( α n − 1 , n 是第 n − 1 个偏振片与第 n 个偏振片偏振方向的夹角 ) I_n=I_{n-1}cos^2\alpha_{a_{n-1},n}(\alpha_{n-1,n}是第n-1个偏振片与第n个偏振片偏振方向的夹角) In=In−1cos2αan−1,n(αn−1,n是第n−1个偏振片与第n个偏振片偏振方向的夹角)
求起偏角/布儒斯特角
i 0 = a r c t a n n 2 n 1 i_0=arctan\frac{n_2}{n_1} i0=arctann1n2
其他问法①:折射光线与反射光线垂直
②:自然光射入,反射光线是线偏振光
求折射角
n 1 s i n i 1 = n 2 s i n i 2 n_1sin i_1=n_2sin i_2 n1sini1=n2sini2