光学整理(猴博士)

衍射

求单缝衍射波长

δ = a ⋅ x f = { ± k λ , ( k = 1 , 2 , 3 … ) 暗纹 ± ( 2 k + 1 ) λ 2 ( k = 1 , 2 , 3 … ) 明纹 0 中央明纹 \delta=a·\frac x f=\begin{cases} \pm k\lambda,(k=1,2,3\ldots) 暗纹\\ \pm(2k+1)\frac \lambda 2(k=1,2,3\ldots) 明纹\\ 0 中央明纹 \end{cases} δ=afx= ±,(k=1,2,3)暗纹±(2k+1)2λ(k=1,2,3)明纹0中央明纹

求单缝衍射中央明纹宽度

l = 2 f λ a l=2f\frac \lambda a l=2faλ

求单缝衍射的半波带数

k k k级明纹对应半波带数: 2 k + 1 2k+1 2k+1

k k k级暗纹对应半波带数: 2 k 2k 2k

求光栅呈现的明条纹有多少级

若光以与水平面夹角为 φ \varphi φ的角度入射,则

δ 1 = ( a + b ) ∣ s i n θ − s i n φ ∣ = k λ ( k = 0 , 1 , 2 … 且 − 9 0 。 < θ < 9 0 。 ) \delta_1=(a+b)|sin\theta-sin\varphi|=k\lambda(k=0,1,2\ldots且-90^。<\theta<90^。) δ1=(a+b)sinθsinφ=(k=0,1,290<θ<90)

并且会在 k = a + b a k ′ ( k ′ = 1 , 2 , 3 … ) k=\frac{a+b}{a}k^{'}(k^{'}=1,2,3\ldots) k=aa+bk(k=1,2,3)处缺级。

求光栅常数

缺级: k = a + b a k ′ ( k ′ = 1 , 2 , 3 … ) k=\frac{a+b}{a}k^{'}(k^{'}=1,2,3 \ldots) k=aa+bk(k=1,2,3)

求光栅屏上某级明纹距离中心的距离

x = t a n θ x=tan\theta x=tanθ,其中 ( a + b ) ∣ s i n θ − s i n φ ∣ = k λ ( k = 级数 ) (a+b)|sin\theta-sin\varphi|=k\lambda(k=级数) (a+b)sinθsinφ=(k=级数)

干涉

求双缝干涉在第几级明纹中心/暗纹中心处的光程差

k k k级明纹中心的光程差:

δ = k λ ( k = 0 , 1 , 2 … ) \delta=k\lambda(k=0,1,2\ldots) δ=(k=0,1,2)

k k k级暗纹中心的光程差:

δ = ( k − 0.5 ) λ ( k = 1 , 2 … ) \delta=(k-0.5)\lambda(k=1,2\ldots) δ=(k0.5)λ(k=1,2)

λ 为波长 \lambda 为 波长 λ为波长

k = 0 k=0 k=0时,零级明纹中心(中央明纹)

求双缝干涉在某位置处的光程差

δ = d ⋅ x D \delta=d·\frac xD δ=dDx

判断双缝干涉在某位置处是啥纹

x x x处是明纹中心:

k = d ⋅ x D ⋅ λ k=\frac{d·x}{D·\lambda} k=Dλdx(为整数)

x x x处是暗纹中心时:

d ⋅ x D ⋅ λ = k − 0.5 \frac {d·x} {D·\lambda}=k-0.5 Dλdx=k0.5(为几点五)

已知双缝干涉中两个纹中心的距离,求入射光波长

暗纹: λ = d ⋅ Δ x D ( k 1 − k 2 ) \lambda=\frac{d·\Delta x}{D(k_1-k_2)} λ=D(k1k2)dΔx

明纹: d ⋅ Δ x D = ( k 1 − k 2 + 0.5 ) λ d·\frac{\Delta x}{D}=(k_1-k_2+0.5)\lambda dDΔx=(k1k2+0.5)λ

双缝干涉中,改变入射光后,新的某纹中心与旧的某纹中心,求新光波长

δ 新纹中心 = δ 旧纹中心 \delta_{新纹中心}=\delta_{旧纹中心} δ新纹中心=δ旧纹中心

双缝干涉中,用云母覆盖某缝后,新的某纹中心与旧的某纹中心重合,求云母厚度

δ 云母覆盖前 − δ 云母覆盖后 = ( 1 − n ) l \delta_{云母覆盖前}-\delta_{云母覆盖后}=(1-n)l δ云母覆盖前δ云母覆盖后=(1n)l

计算薄膜干涉的光程差

波长为 λ \lambda λ的光从折射率为 n 1 n_1 n1的介质中以与竖直方向夹角为 θ \theta θ的角度射入折射率为 n 2 n_2 n2的薄膜中,薄膜另一侧介质折射率为 n 3 n_3 n3

观察的光是 m 1 , n 2 , n 3 是否依次增大或减小 m_1,n_2,n_3是否依次增大或减小 m1,n2,n3是否依次增大或减小光程差 δ \delta δ
反射光 2 e n 2 2 − n 1 2 s i n 2 θ 2e\sqrt{n_2^2-n_1^2sin^2\theta} 2en22n12sin2θ
不是 2 e n 2 2 − n 1 2 s i n 2 θ + λ 2 2e\sqrt{n_2^2-n_1^2sin^2\theta}+\frac \lambda 2 2en22n12sin2θ +2λ
折射光 2 e n 2 2 − n 1 2 s i n 2 θ + λ 2 2e\sqrt{n_2^2-n_1^2sin^2\theta+\frac \lambda 2} 2en22n12sin2θ+2λ
不是 2 e n 2 2 − n 1 2 s i n 2 θ 2e\sqrt{n_2^2-n_1^2sin^2\theta} 2en22n12sin2θ

判断薄膜干涉是明纹还是暗纹

明纹: δ = l λ ( k = 0 , 1 , 2 … ) \delta=l\lambda(k=0,1,2\ldots) δ=lλ(k=0,1,2)

暗纹: δ = 2 k + 1 2 λ ( l = 0 , 1 , 2 … ) \delta=\frac {2k+1}{2}\lambda(l=0,1,2\ldots) δ=22k+1λ(l=0,1,2)

判断薄膜呈什么颜色

颜色绿
λ ( n m ) \lambda(nm) λ(nm) 390   − 500 390~-500 390 500 450   − 500 450~-500 450 500 500   − 800 500~-800 500 800
颜色
λ ( n m ) \lambda(nm) λ(nm) 580   − 600 580~-600 580 600 600   − 620 600~-620 600 620 620   − 750 620~-750 620 750

计算劈尖干涉的细丝直径

光的波长为 λ \lambda λ,劈尖上表面、中间介质、下表面的折射率分别是 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3

细丝处为 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3是否依次增大或减小细丝直径
明纹中心 d = ( k − 1 ) λ 2 n 2 d=\frac{(k-1)\lambda}{2n_2} d=2n2(k1)λ
不是 d = ( k − 1 2 ) λ x n 2 d=\frac{(k-\frac 12)\lambda}{xn_2} d=xn2(k21)λ
暗纹中心 d = ( k − 1 2 ) λ 2 n 2 d=\frac{(k-\frac 12)\lambda}{2n_2} d=2n2(k21)λ
不是 d = ( k − 1 ) λ 2 n 2 d=\frac{(k-1)\lambda}{2n_2} d=2n2(k1)λ

已知多条明纹/暗纹间距,求细丝直径

已知光的波长为 λ \lambda λ

a a a条明纹/暗纹间距为 Δ x \Delta x Δx

劈尖中间介质折射率为 n 2 n_2 n2

细丝与劈尖棱边距离为 D D D

则细丝直径 d = ( a − 1 ) λ D 2 n 2 Δ x d=\frac{(a-1)\lambda D}{2n_2\Delta x} d=2n2Δx(a1)λD

根据条纹疏密变化,判断细丝直径变化

条纹靠近细丝移动 → \to 厚度减小

条纹远离细丝移动 → \to 厚度增大

计算牛顿环第 k k k个明环/暗环处介质厚度及环半径

光的波长为 λ \lambda λ,牛顿环上面的透镜的曲率半径为 R R R

牛顿环上面的透镜,中间的透明介质,下面的玻璃的折射率分别是 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3,细丝直径 e e e

指定的位置 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3是否依次增大或减小介质厚度 e e e环半径 r r r
k k k个明环处 e = k λ 2 n 2 ( k = 0 , 1 , 2 … ) e=\frac{k\lambda}{2n_2}(k=0,1,2\ldots) e=2n2(k=0,1,2) r = 2 R e r=\sqrt{2Re} r=2Re
不是 e = ( k − 1 2 ) λ 2 n 2 ( k = 1 , 2 , 3 … ) e=\frac{(k-\frac 12)\lambda}{2n_2}(k=1,2,3\ldots) e=2n2(k21)λ(k=1,2,3) r = 2 R e r=\sqrt{2Re} r=2Re
k k k个暗环处 e = ( k − 1 2 ) λ 2 n 2 ( k = 1 , 2 , 3 … ) e=\frac{(k-\frac 12)\lambda}{2n_2}(k=1,2,3\ldots) e=2n2(k21)λ(k=1,2,3) r = 2 R e r=\sqrt{2Re} r=2Re
不是 e = k λ 2 n 2 ( k = 0 , 1 , 2 … ) e=\frac{k\lambda}{2n_2}(k=0,1,2\ldots) e=2n2(k=0,1,2) r = 2 R e r=\sqrt{2Re} r=2Re

偏振

求光通过偏振片后的光强

若光强为 I 0 I_0 I0的自然光通过几块偏振片,则:

通过第一个偏振片后的光强为 I 1 = 1 2 I 0 I_1=\frac 1 2I_0 I1=21I0

通过第二个偏振片后的光强为 I 2 = I 1 c o s 2 α 1 , 2 ( α 1 , 2 是第一个偏振片与第二个偏振片偏振方向的夹角 ) I_2=I_1cos^2\alpha_{1,2}(\alpha_{1,2}是第一个偏振片与第二个偏振片偏振方向的夹角) I2=I1cos2α1,2(α1,2是第一个偏振片与第二个偏振片偏振方向的夹角)

通过第二个偏振片后的光强为 I 3 = I 2 c o s 2 α 2 , 3 ( α 2 , 3 是第二个偏振片与第三个偏振片偏振方向的夹角 ) I_3=I_2cos^2\alpha_{2,3}(\alpha_{2,3}是第二个偏振片与第三个偏振片偏振方向的夹角) I3=I2cos2α2,3(α2,3是第二个偏振片与第三个偏振片偏振方向的夹角)

.

.

.

通过第 n n n个偏振片后的光强为 I n = I n − 1 c o s 2 α a n − 1 , n ( α n − 1 , n 是第 n − 1 个偏振片与第 n 个偏振片偏振方向的夹角 ) I_n=I_{n-1}cos^2\alpha_{a_{n-1},n}(\alpha_{n-1,n}是第n-1个偏振片与第n个偏振片偏振方向的夹角) In=In1cos2αan1,n(αn1,n是第n1个偏振片与第n个偏振片偏振方向的夹角)

求起偏角/布儒斯特角

i 0 = a r c t a n n 2 n 1 i_0=arctan\frac{n_2}{n_1} i0=arctann1n2

其他问法①:折射光线与反射光线垂直

​ ②:自然光射入,反射光线是线偏振光

求折射角

n 1 s i n i 1 = n 2 s i n i 2 n_1sin i_1=n_2sin i_2 n1sini1=n2sini2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值