电磁学整理(猴博士)

场强与场强的叠加

在这里插入图片描述

积分求场强与电场力

利用积分求场强

①对面投影,使面变成线

②建立 x , y x,y x,y坐标系
{ 直线 : x 轴与线重合 圆弧 : 原点位于圆心 \begin{cases} 直线:x轴与线重合 \\ 圆弧:原点位于圆心 \end{cases} {直线:x轴与线重合圆弧:原点位于圆心

③直线:选择线上任意一点,点宽度为 d x dx dx,到 O O O距离为 x x x,求出该点对待求点的场强 d E dE dE
弧:选择线上任意一点,点对应角度为 d φ dφ dφ,求出该点对待求点的场强 E E E
④求出 d E dE dE x , y x,y x,y轴的分量 d E x , d E y dE_x,dE_y dEx,dEy
⑤对 d E x , d E y dE_x,dE_y dEx,dEy积分,求出 E x , E y E_x,E_y Ex,Ey,并合并。

电场力/库仑力

受力的电荷力的大小力的方向
点电荷 F = E q F=Eq F=Eq
带电体①建立坐标轴坐标系/坐标系
②受力体上取某点,求出其电量 d q dq dq
③求出场源电荷在点处的场强 E E E
F = E d q F=Edq F=Edq在带电体上的积分
遵循同性相斥,异性相吸的规律

场强的注意点

①描述静电场性质的两个基本物理量是 电场强度 ‾ \underline{电场强度} 电场强度 u n d e r l i n e 电势 underline{电势} underline电势
 它们的定义式是 E ⃗ = F ⃗ q 0 ‾ \underline{\vec{E}=\frac{\vec{F}}{q_0}} E =q0F ∫ A 点 电势零点 E ⃗ d l ⃗ ‾ \underline{\int_{A点}^{电势零点}{\vec{E}d\vec{l}}} A电势零点E dl
②场强是矢量,既有大小又有方向。
③试验电荷是正电荷时,其所受电场力方向与场强方向相同 。
 试验电荷是负电荷时,其所受电场力方向与场强方向相反。

电通量,高斯定理

求通过某个面的电通量

在这里插入图片描述

当面与 E E E平行时, φ e = 0 φ_e=0 φe=0
当有多个面时,求各个面的电通量,再将结果相加。

用高斯定理 φ e = 1 ε 0 ∑ q 内 φ_e=\frac{1}{ε_0}\sum_{}^{}q_内 φe=ε01q求场强。

在这里插入图片描述

电通量,高斯定理注意点

在这里插入图片描述

电介质中的高斯定理与静电能

用电介质中的高斯定理求场强

①当作没有电介质,求出场强
②将式子中的 φ e φ_e φe改成 ε r ∮ s E d s ε_r∮_sEds εrsEds,并给结果乘上 ε r ε_r εr

求极化电荷,束缚电荷

①求出电介质中真是的场强 E E E
②假设没有电介质,求出没有时的场强 E 无介质 E_{无介质} E无介质
③将 E 无 介质 E_无介质 E介质表达式里的 q q q σ σ σ换成
q 极化 或 σ 极化,该场强记作 E 极化 q_{极化}或σ{极化},该场强记作E_{极化} q极化σ极化,该场强记作E极化
④根据 E = E 无介质 + E 极化 E=E_{无介质}+E_{极化} E=E无介质+E极化求出 q 极化 或 σ 极化 q_{极化}或σ_{极化} q极化σ极化

电介质中高斯定理注意

①静电场的高斯定理有两种形式: ∮ S D ∗ d s = ∑ q ∮_SD*ds=\sum{q} SDds=q,其中 q q q指的是高斯面 S S S内的自由电荷; ∮ S E ∗ d s = 1 ϵ 0 ∑ q ∮_SE*ds=\frac{1}{\epsilon_0}\sum{q} SEds=ϵ01q,其中 q q q指的是高斯面 S S S内的所有电荷,在电介质, q q q包括自由电荷和极化电荷两部分。
②电介质中的电位移 D D D与自由电荷和极化电荷的分布有关。
③电介质充满整个电场且自由电荷的分布不发生变化时:
电介质中场强等于没有电介质时该点场强的 1 σ r 倍 电介质中场强等于没有电介质时该点场强的\frac{1}{\sigma_r}倍 电介质中场强等于没有电介质时该点场强的σr1

静电能的能量/静电能

①求出场强 E E E(用距离r表示)
②体积微分 d V = 4 π r 2 d r dV=4πr^2dr dV=4πr2dr
③静电能 W = ∫ V 1 2 ϵ 0 ϵ r E 2 d V W=\int_{V}\frac{1}{2}\epsilon_0\epsilon_rE^2dV W=V21ϵ0ϵrE2dV
V指要求静电能的空间

电势,电势能

根据场强求电势

①求出场强 E E E(用距离r表示)
②如果题目指定了电势零点,则直接进行下一步;
 如果没有,则选择无穷远处为电势零点。

电势 V = ∫ 待求点的 r 值 电势零点的 r 值 E ∗ d r 电势V=\int_{待求点的r值}^{电势零点的r值} {E*dr} 电势V=待求点的r电势零点的rEdr

电势差/电压

①求出场强 E E E(用距离r表示)
U a b = U a − U b = ∫ a 的 r 值 b 的 r 值 E ∗ d r U_{ab}=U_a-U_b=\int_{a的r值}^{b的r值} {E*dr} Uab=UaUb=arbrEdr

取电荷元求电势

①对面投影,使面变成线。
②建立x,y坐标轴
{ 直线: x 轴与线重合 弧:原点位于圆点 \begin{cases} 直线:x轴与线重合\\ 弧:原点位于圆点 \end{cases} {直线:x轴与线重合弧:原点位于圆点

{ 直线:选择线上任意一点,点宽度为 d x ,到 O 距离为 x ,求出该点的电量 d q 弧:选择线上任意一点,点对应角度为 d φ ,求出该点的电量 d q \begin{cases} 直线:选择线上任意一点,点宽度为dx,到O距离为x,求出该点的电量dq\\ 弧:选择线上任意一点,点对应角度为dφ,求出该点的电量dq \end{cases} {直线:选择线上任意一点,点宽度为dx,到O距离为x,求出该点的电量dq弧:选择线上任意一点,点对应角度为dφ,求出该点的电量dq
④求出点到待求点的距离 r 待求点 r_{待求点} r待求点

⑤以无穷远处为电势零点,得出 d U = d q 4 π ϵ 0 r 待求点 dU=\frac {dq}{4π\epsilon_0r_{待求点}} dU=4πϵ0r待求点dq

U = ∫ d U U=\int{dU} U=dU

电势/电势差的注意点

描述静电场性质的两个基本物理量是 电场强度 ‾ \underline{电场强度} 电场强度 电势 ‾ \underline{电势} 电势,他们的定义式是 E ⃗ = F ⃗ q 0 ‾ \underline{\vec{E}=\frac{\vec{F}}{q_0}} E =q0F U A 点 = ∫ A 点 电势零点 E ⃗ ∗ d l ⃗ ‾ \underline{U_{A点}=\int_{A点}^{电势零点}{\vec{E}*d\vec{l}}} UA=A电势零点E dl

①电势会沿着电场线的方向变小。

②一点的电势不是一成不变的,会随着电势零点的变化而变化。

③无论电势零点选在哪里,两点间的电势差是不会变的。

④场强是电势的微分

{ E x = − ∂ U ∂ x E y = − ∂ U ∂ y E z = − ∂ U ∂ z \begin{cases} E_x=-\frac{∂U}{∂x}\\ E_y=-\frac{∂U}{∂y}\\ E_z=-\frac{∂U}{∂z} \end{cases} Ex=xUEy=yUEz=zU

电势能

电荷电势能
点电荷 q q q电势能
带电体①建立坐标轴/坐标系
②待求件上取某个点,求出其电量 d q dq dq
③求出点处,其他带电体的电势
W = ∫ U d q W=\int{Udq} W=Udq

电场力对位移的电荷做功

①求出场源电势 V V V(用距离 r r r表示)

②找出受力电荷 q q q的起点距离 r 1 r_1 r1,终点距离 r 2 r_2 r2

③电场力做功 A 12 = q ( U r 2 − U r 2 ) A_{12}=q(U_{r2}-U_{r2}) A12=q(Ur2Ur2)(若场源由多部分组成,则依次计算各部分的做功,最后叠加起来)

静电平衡

静电平衡的导体

①若两带电体放在一起,则:

 a、带电体中的电荷都会跑到表面

 b、可以吸引另一个带电体中相反的电荷

 c、带电体除表面外的部分 ∑ q = 0 \sum{q}=0 q=0

 d、带电体除表面外的部分 E E E处处为0

 e、带电体各处电势均相等

②若带电体接地,则靠近另一带电体这侧和没接地一样,而远离另一带电体这侧变为中性(通过该侧所有电荷入地/从大地进入等量的向电荷)

有静电平衡的导体,求场强

①根据下表,画出封闭曲面

②算出封闭曲面的电通量 Φ e \Phi_e Φe

③求出封闭曲面内的电荷量 ∑ q 内 \sum{q_内} q

④用高斯定理 Φ e = 1 ϵ 0 ∑ q 内 \Phi_e=\frac {1}{\epsilon_0}\sum{q_内} Φe=ϵ01q

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AbRveLSV-1676049930286)(4.png)]

有静电平衡的导体,求电势

以无穷远处为电势零点,则 U = ∫ r + ∞ E d r U=\int_r^{+\infty}{Edr} U=r+Edr

电容

平板板电容器

若平行班电容器电容器两板相对面积为 S S S,间距为 d d d,两板间介质的相对介电常数为 ϵ r \epsilon_r ϵr

一块板的带电量为 Q Q Q,电荷面密度为 σ \sigma σ

两板间场强为 E E E、电压为 U U U、相互作用力为 F F F
C = { Q U ϵ 0 ϵ r S d , Q = C U , E = { σ ϵ 0 ϵ r U d 2 F Q , U = { Q C E d , F = E Q 2 ( 1 μ F = 1 0 − 6 F , 1 p F = 1 0 − 12 F ) C=\begin{cases} \frac{Q}{U}\\ \frac{\epsilon_0\epsilon_rS}{d} \end{cases} ,Q=CU,E=\begin{cases} \frac{\sigma}{\epsilon_0\epsilon_r}\\ \frac Ud\\ \frac {2F}Q \end{cases} ,U=\begin{cases} \frac QC\\ Ed \end{cases} ,F=\frac{EQ}2\\ (1\mu F=10^{-6}F,1pF=10^{-12}F) C={UQdϵ0ϵrS,Q=CU,E= ϵ0ϵrσdUQ2F,U={CQEd,F=2EQ(1μF=106F,1pF=1012F)

平行板中间有介质,求总电容

若两板间有多种东西,且每种的厚度分别为 d 1 , d 2 , … , d n d1,d2,\ldots,dn d1,d2,,dn

则相对介电常数为 ϵ r 1 , ϵ r 2 , … , ϵ r n \epsilon_{r1},\epsilon_{r2},\ldots,\epsilon_{rn} ϵr1,ϵr2,,ϵrn

c = ϵ 0 S d 1 ϵ r 1 + d 2 ϵ r 2 + … + d n ϵ r n c=\frac{\epsilon_0S}{\frac{d_1}{\epsilon_{r1}}+\frac{d_2}{\epsilon_{r2}}+\ldots+\frac{d_n}{\epsilon_{rn}}} c=ϵr1d1+ϵr2d2++ϵrndnϵ0S

(若某种为金属板,则 ϵ r = + ∞ \epsilon_r=+\infty ϵr=+)

圆柱形电容器,球形电容器

在这里插入图片描述

圆柱形电容器中 R 2 > R 1 R_2>R_1 R2>R1

电容器内部分区域有介质,且介质面与电容器垂直,求总电容

算出各段的电容 C 1 , C 2 , C 3 , … C_1,C_2,C_3,\ldots C1,C2,C3,

C = C 1 + C 2 + C 3 + … C=C_1+C_2+C_3+\ldots C=C1+C2+C3+

电容器储存的电场能

W = Q 2 2 C = 1 2 Q C = 1 2 C U 2 W=\frac{Q^2}{2C}=\frac 12QC=\frac 12CU^2 W=2CQ2=21QC=21CU2

电容器两极间的位移电流

I d = { ϵ r ϵ 0 d E d t S c d U d t 方向与 E , U 相反 I_d=\begin{cases} \epsilon_r\epsilon_0\frac{dE}{dt}S\\ c\frac{dU}{dt} \end{cases}\\ 方向与E,U相反 Id={ϵrϵ0dtdEScdtdU方向与E,U相反

磁场

利用表格求磁感应强度

在这里插入图片描述

求通电导线段/射线的磁感应强度

若代求点在导线或其延长线上,则磁感应强度为0;若不在,则按下列步骤计算:

①按电流方向找出导线的起点,终点及待求点到导线的距离为 r r r

②待求点与起点连线,连线与导线的电流方向的延长线的夹角为 θ 1 \theta_1 θ1

③将待求点与终点连线,连线与导线的电流方向的延长线的夹角为 θ 2 \theta_2 θ2

B = μ 0 I 4 π r ( c o s θ 1 − c o s θ 2 ) B=\frac{\mu_0I}{4\pi r}(cos\theta_1-cos\theta_2) B=4πrμ0I(cosθ1cosθ2)

求长为 d l dl dl的通电短导线的磁感应长度

若待求点在导线或其延长线上,则 d l dl dl长导线的磁感应强度为0,

若不在,则 B = μ 0 I d l s i n θ 4 π r 2 ( θ 是 I 方向与 r 的夹角 ) B=\frac{\mu _0Idlsin\theta}{4\pi r^2}(\theta是I方向与r的夹角) B=4πr2μ0Idlsinθ(θI方向与r的夹角)

利用积分求磁感应强度

①选择与 I I I纯质,且经过待求点的方向,建立 x x x坐标轴。

②在坐标轴上去宽度为 d x dx dx,与 O O O距离为 x x x的一点,求出该点对应通电部分的电流 d I dI dI

③求出该点对应通电部分在待求点的磁感应强度 d B dB dB

B = ∫ d B B=\int{dB} B=dB

利用安培环路定理求 B B B

①按照下表,判断出 B B B的方向,构造出相对应的闭合曲线 l l l,并随便假设个 l l l的方向

②求出 ∮ B d l \oint{Bdl} Bdl
∮ B d l = B ∗ ( l 与 B 平行且同向部分 − l 与 B 平行且反向部分 ) \oint{Bdl}=B*(l_{与B平行且同向部分}-l_{与B平行且反向部分}) Bdl=B(lB平行且同向部分lB平行且反向部分)
③求出闭合曲线内的电流 ∑ I 内 \sum{I_内} I

 右手四指按闭合曲线的方向弯曲

 电流方向与伸直的拇指方向相同时 ∑ I 内 \sum {I_内} I取正,

 相反时 ∑ I 内 \sum {I_内} I取负

④用 ∮ B d l = μ 0 ∑ I 内 \oint{Bdl}=\mu _0\sum{I_内} Bdl=μ0I求出代求的磁感应强度

在这里插入图片描述

磁场里的力

判断有速度的电荷在磁场中收的力(洛仑兹力)

大小: F = q v B s i n θ ( 其中 θ 是 v 与 B 的夹角 , 0 ≤ θ ≤ π ) F=qvBsin\theta(其中\theta是v与B的夹角,0\leq\theta\leq\pi) F=qvBsinθ(其中θvB的夹角,0θπ)

方向:正电荷:右手手腕到手掌是速度方向,手指根到指尖是磁场方向,此时拇指方向即是力的方向

​ 负电荷:与正电荷相反

带电粒子在磁场作用下运动

带电粒子 q q q以初速度 v 0 v_0 v0进入磁场中

情况①: v 0 / / B v_0//B v0//B:粒子仍以 v 0 v_0 v0作匀速直线运动

情况②: v 0 ⊥ B v_0\bot B v0B:粒子在垂直 B B B的平面内,以$ v_0$作匀速圆周运动。
运动半径: R = m v 0 q B 运动周期: T = 2 π m q B ( 式中 m 为粒子质量 ) 运动半径: R=\frac{mv_0}{qB}\\ 运动周期: T=\frac{2\pi m}{qB}\\ (式中m为粒子质量) 运动半径:R=qBmv0运动周期:T=qB2πm(式中m为粒子质量)

通电导线在磁场中受的力(安培力)

大小: F = I l s i n θ ( 式中 l 为电流起点到电流终点的直线距离, θ 为电流起点到电流终点的方向与 B 的夹角, 0 ≤ θ ≤ π ) F=Ilsin\theta(式中l为电流起点到电流终点的直线距离,\theta为电流起点到电流终点的方向与B的夹角,0 \leq\theta\leq\pi ) F=Ilsinθ(式中l为电流起点到电流终点的直线距离,θ为电流起点到电流终点的方向与B的夹角,0θπ)

方向:让右手手腕到手掌与电流起点到终点方向一致,让手指根到指尖的方向与磁场方向一致,此时拇指方向就是所受安培力的方向。

载流线圈的磁矩 m ⃗ \vec{m} m ,收到的力矩 M ⃗ \vec{M} M

m ⃗ { 大小 : m = N I S ( N 为线圈匝数, S 为线圈面积 ) 方向 : 右手四指按电流 I 方向弯曲时,伸直的拇指表示 m ⃗ 的方向 \vec{m}\begin{cases} 大小:m=NIS(N为线圈匝数,S为线圈面积)\\ 方向:右手四指按电流I方向弯曲时,伸直的拇指表示\vec{m}的方向 \end{cases} m {大小:m=NIS(N为线圈匝数,S为线圈面积)方向:右手四指按电流I方向弯曲时,伸直的拇指表示m 的方向

M ⃗ { 大小 : M = m B s i n θ ( θ 为 m ⃗ 与 B ⃗ 的夹角 , 0 ≤ θ ≤ π ) 方向 : 可使 m ⃗ 的方向接近 B ⃗ 的方向的转向 \vec{M}\begin{cases} 大小:M=mBsin\theta(\theta为\vec{m}与\vec{B}的夹角,0\leq\theta\leq\pi)\\ 方向:可使\vec{m}的方向接近\vec{B}的方向的转向 \end{cases} M {大小:M=mBsinθ(θm B 的夹角,0θπ)方向:可使m 的方向接近B 的方向的转向

霍尔效应

大小: V = A H I B d ( A H 为霍尔系数,其大小与板本身有关 , d 为导体板与 B 平行那个边的长度 ) V=A_H\frac{IB}{d}(A_H为霍尔系数,其大小与板本身有关,d为导体板与B平行那个边的长度) V=AHdIB(AH为霍尔系数,其大小与板本身有关,d为导体板与B平行那个边的长度)

方向:右手手腕到手掌与电流方向一致,手指根到指尖与磁场方向一致,拇指方向指向的面是电势较高的一侧

磁介质

判断三种磁介质

磁介质相对磁导率 μ r \mu _r μr的情况
抗磁质 μ r < 1 \mu _r<1 μr<1
顺磁质 μ r > 1 \mu _r>1 μr>1
铁磁质
(铁磁质其实算是顺磁质的一种特殊情况,因其用途广,故单独命名一类)
μ r > > 1 \mu _r>>1 μr>>1
且会随着磁场 B B B的变化而变化

管内有磁介质,求螺线管内的磁感应强度,磁场强度

管内磁感应强度

 大小: B = μ 0 μ r n I B=\mu _0\mu _r n I B=μ0μrnI

 其中: μ r \mu _r μr指的是管内磁介质的相对磁导率, n n n指的是单位长度上线圈的匝数,等于 总匝数 总管长 \frac{总匝数}{总管长} 总管长总匝数

管内磁场强度

 大小: H = n I H=n I H=nI

 其中, n n n指的是单位长度上线圈的匝数,等于 总匝数 总管长 \frac{总匝数}{总管长} 总管长总匝数

方向:与 B B B一致

磁介质的其他两个属性:

 磁导率: μ = μ r μ 0 \mu=\mu _r\mu_0 μ=μrμ0

 磁化率: x = μ r − 1 x=\mu _r-1 x=μr1

用磁介质中的安培环路定理求磁场强度与磁感应强度

①按照下表,判断出 H H H的方向,构造出相对应的闭合曲线 I I I,并随便假设个 I I I的方向。

②求出 ∮ L H d l \oint_L{Hdl} LHdl

∮ L H d l = H ∗ ( l 与 H 平行且同向部分 − l 与 H 平行且反向部分 ) \oint_L{Hdl}=H*(l_{与H平行且同向部分}-l_{与H平行且反向部分}) LHdl=H(lH平行且同向部分lH平行且反向部分)

③求出闭合曲线内的电流 ∑ I 内 \sum { I_内} I

​ 右手四指按闭合曲线的方向弯曲,电流方向与伸直的拇指方向相同时, ∑ I 内 \sum { I_ 内} I取正,相反时 ∑ I 内 \sum { I_ 内} I取反。

④用 ∮ L H d l = ∑ I 内 \oint_L{Hdl}=\sum {I _ 内} LHdl=I,求出 H H H,用 B = μ 0 μ r H B=\mu _ 0 \mu _ rH B=μ0μrH求出 B B B B B B H H H方向一致)

在这里插入图片描述

求束缚电流/磁化电流

①求磁介质中的 B B B;

②求出磁介质在代求表面处的 B 表面 B_{表面} B表面

③联立下列三个方程,解出束缚电流密度 j ′ j^{'} j
j ′ = M c o s θ M = μ r − 1 μ 0 μ r B 表面 θ = 0 … }    ⟹    j ′ = … ( j ′ 值为正时束缚电流与导体内的电流同向, j ′ 值为负时束缚电流与导体内的电流反向 ) \left. \begin{matrix} j^{'}=Mcos\theta\\ M=\frac{\mu _r-1}{\mu _0 \mu_r}B_{表面}\\ \theta=0 \end{matrix}\ldots \right\}\implies j^{'}=\ldots\\ (j^{'}值为正时束缚电流与导体内的电流同向,j^{'}值为负时束缚电流与导体内的电流反向) j=McosθM=μ0μrμr1B表面θ=0 j=(j值为正时束缚电流与导体内的电流同向,j值为负时束缚电流与导体内的电流反向)

电磁感应

求通过某个面的磁通量

情况磁通量 Φ \Phi Φ
平面法线方向与 B B B方向夹角为 θ \theta θ P h i = ± B ∗ S c i n θ Phi=\pm B*Scin\theta Phi=±BScinθ
= ± B ∗ S ⊥ =\pm B*S_{\bot} =±BS
封闭曲面 Φ = 0 \Phi=0 Φ=0

(若面为封闭面,则 B B B穿出为正,反之为负)

利用积分通过某个面的磁通量

①建立垂直于 I I I x x x轴, O O O点在 I I I

②在代求面任取一窄长条,对应宽度为 d x dx dx,与 I I I的距离为 x x x,求出窄长条的面积 d S dS dS

③求出 I I I在窄长条处产生的磁感应长度 B B B

④总磁通量为 Φ = ∫ B d S \Phi =\int {B d S} Φ=BdS

由磁通量变化产生的感应电动势通过 N N N匝闭合曲线的磁通量$\Phi $发生变化时:

电动势大小: E = − N d Φ d t E=-N\frac{d\Phi}{dt} E=NdtdΦ

电动势方向:磁通量增加时,右手拇指指向 B B B的反方向

​ 磁通量减少时,右手拇指指向 B B B的方向相对,磁通量减少时拇指与磁线方向一致,则弯曲的四指表示线圈中电动势/电流的方向

由切割磁感线产生的感应电动势

电动势大小:平动切割时: E = B l v ⊥ ( l : 导线在垂直于 B 的面的投影长 ; v ⊥ : v 在垂直于 B 的面的投影长 ) E=Blv_{\bot}(l:导线在垂直于B的面的投影长;v_{\bot}:v在垂直于B的面的投影长) E=Blv(l:导线在垂直于B的面的投影长;v:v在垂直于B的面的投影长)

​ 转动切割时: E = 1 2 B ω l 2 E=\frac 12 B\omega l^2 E=21Bωl2

电动势方向:电源负极 → \to 电源正极

​ 右手拇指与 v v v w w w一致,让磁感线从掌心穿过,四指指尖指向正极,反方向为负极。

感应电流:若切割部分外接闭合电路,则电路中有感应电流,从负极 → \to 正极,若其不在电路中,则无感应电流(不过电动势还有的)

利用积分算切割产生的感应电动势

电动势大小:

①沿着待求导线建立坐标轴 O x Ox Ox

②在坐标 x x x处取长度为 d x dx dx的距离 O O O x x x的点

③求出点处,待求导线外的通电体产生的磁感应强度 B B B

④总电路 E = ∫ B r d x E=\int {Brdx} E=Brdx

电动势方向:电源负极 → \to 电源正极

​ 右手拇指与 v v v ω \omega ω一致,让磁感线从掌心穿过,四指指尖指向正极,反方向为负极

感应电流:若切割部分外接闭合电路,则电路中有感应电流,从负极 → \to 正极,若其不在电路中,则无感应电流(不过电动势还是有的)

螺线管中的磁能

磁能: W = 1 2 μ 0 μ r n 2 I 2 n : 单位长度的匝数 μ r : 螺线管内磁介质的相对磁感率 v : 螺线管的管内体积 磁能:W=\frac 12 \mu _0 \mu _rn^2I^2\\ n:单位长度的匝数\\ \mu _r:螺线管内磁介质的相对磁感率\\ v:螺线管的管内体积 磁能:W=21μ0μrn2I2n:单位长度的匝数μr:螺线管内磁介质的相对磁感率v:螺线管的管内体积

磁场的能量密度

W = B 2 2 μ 0 μ r W=\frac{B^2}{2\mu_0\mu_r} W=2μ0μrB2

  • 10
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的计算结果电磁学几个常用的
"FEM电磁学MATLAB"是指使用有限元方法(FEM)和MATLAB编程语言进行电磁学领域的数值模拟和分析。 有限元方法是一种用于解偏微分方程的数值方法,也是电磁学领域常用的数值计算方法之一。它将连续领域离散化为有限数量的区域,然后解每个区域内的方程,最终得到整个领域内的解。而MATLAB是一种强大的数值计算与编程环境,提供了丰富的工具箱和函数来帮助用户进行科学计算和数据可视化。 在"FEM电磁学MATLAB"中,我们可以利用MATLAB的有限元工具箱(PDE Toolbox)进行电磁学问题的建模和解。首先,我们需要将待解的电磁学问题转化为偏微分方程的形式,例如Maxwell方程组。然后,使用有限元方法将连续的电磁学问题离散化为有限的单元网格,同时利用MATLAB的有限元工具箱定义相应的物理参数和边界条件。 接下来,通过MATLAB提供的解器和迭代算法,可以对离散化后的方程进行解,并得到电磁场的数值解。另外,MATLAB还提供了丰富的函数和工具用于分析和可视化结果数据,如绘制电磁场分布图、计算电磁场的能量和功率等。 总之,"FEM电磁学MATLAB"的应用使得我们能够在电磁学领域中进行更加准确和可靠的数值计算与预测。同时,利用MATLAB编程语言的优势,我们可以自定义和优化数值计算算法,以满足不同电磁学问题的需

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值