2.2 Logistic 回归-深度学习-Stanford吴恩达教授

        在这个视频中,我们会重温逻辑回归学习算法,使用这种学习算法会得到输出标签 y ,y在监督学习问题中全是0 或者 1。因此这是一种针对二分类问题的算法。

        给定的输入特征向量 x ,它可能对应一张图片,你想识别这张图片识别看它是否是一只猫的图片,因此想要一个算法能够输出预测值 y\hat{} (称之为y帽,即y hat)。也就是你对实际值 y 的估计。更正式地来说,y\hat{} 是当给定输入特征 x 时预测 y 为 1 的概率。(换种说法就是,当x 时一张图片的时候,你想要 y\hat{} 告诉你这是一张猫图的概率。)在之前的视频中所说的,x是一个n_{x}维向量(即x\in R^{n_{x}})。规定回归逻辑参数为ww 也是一个n_{x} 维向量(即w\in R^{n_{x}})。另外参数里面还有b,这是个实数(即b \in R)。

因此给定一个输入x 以及参数 w 和 b ,那么如何产生输出y\hat{} 呢?有一种方法可以试试,尽管可能不怎么有用,就是让 y\hat{} = w^{T} \cdot x +b ,我们得到一个输入x 的线性函数。

在这里插入图片描述

事实上,如果使用线性回归,就是这样操作的。但是这对于二分类而言不是一个好的算法。因为你希望y\hat{}能够输出 y 为1 的概率。因此y\hat{} 的值应该在0 和 1 之间。而刚刚那种算法很难实现这种需求,因为y\hat{} = w^{T} \cdot x +b 可能会比 1 大,甚至可能是个负数。这对于概率就是去意义了。所以,让逻辑回归中y\hat{} 等于对 w^{T} \cdot x +b 这个值用sigmoid函数的结果。(即,目前是给出一个线性函数,但是其值可能比 1 大,或者是负数,而为了使结果概率在0~1之间,就用sigmoid函数把线性函数的值压缩在0~1之间。)

下图是sigmoid函数的图像,如果我把水平轴作为z轴,那么关于z轴的sigmoid函数是这样的,它是平滑地从0走向1,这就是关于的sigmoid(z)函数的图像。我们通常都使用 z 来表示w^{T} \cdot x +b 的值。

在这里插入图片描述

 关于sigmoid函数的公式是这样的,\sigma (z) = \frac{1}{1+e^{-z}} ,在这里z 是一个实数。请注意:如果z非常大,e^{(-z)} 就会接近于 0,此时\sigma (z) \approx 1 。相反的,如果z非常小,小到甚至是负数,那么\sigma (z) \approx 0 。

因此当你实现逻辑回归时,你的目标就是去让机器学习参数wb,这样才使得y \hat{} 很好地估计y 等于 1 的概率。

      在继续进行下一步之前,还有一点需要强调,当进行神经网络编程时,我们通常会将参数wb分开看待。这里的b对应一个偏置值。在一些的机器学习课程里,可能也会看到其他符号去用不用的方式处理参数。在某些课程中,会定义x_{0} = 1 ,因此x 的维度就变成了n_{(x+1)} ,(即x \in{R^{n_{x+1}}}),之后继续定义y \hat{} = \sigma{(\Theta^{T}\cdot x) } ,(即,sigmoid函数)。在这种情况下,会有一个向量参数\Theta = [\Theta_{0},\Theta_{0},\Theta_{2},...,\Theta_{n_{x}}]^{T} ,其中\Theta _{0} 代替了参数b,而\Theta _{1},...,\Theta _{n_{x}} 是代替了参数 w 。事实上,当你在实现神经网络时,把bw当作相互独立的参数会更简单。所以在这门课程中,我们不会用第二种符号方法去表达(不同的课程教程,里面简化的方式不一样)。

        现在你已经知道逻辑回归模型是什么样子了,下一步要做的是训练参数wb,在此之前,我们还需要定义一个代价函数(cost function)。让我们在下节课里对其进行解释。

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值