吴恩达深度学习--logistic回归模型

本文深入探讨吴恩达深度学习课程中的逻辑回归模型,包括模型定义、损失函数、成本函数的推导及梯度下降法的应用。通过实例展示了在m个样本上如何实施逻辑回归,并讨论了效率提升的向量化方法。
摘要由CSDN通过智能技术生成

logistic回归模型定义

       考虑具有n个独立变量的向量 x=(x1,x2,...,xn) ,设条件概率 p(a=1|x)=p 为根据测量为相对于某件事发生的概率,则logistic回归模型为: p(a=1|x)=π(x)=11+ez 。这里的 a=11+ez 称为logistic函数。其中 z=w0+w1x1+...+wnxn

损失函数

        L(a,y)=(yloga+(1y)log(1a)) 。其中 a=11+ez 。a是逻辑回归模型的输出,y是样本的基本真值标签值。损失函数是衡量的是单个样本,越小越好。

成本函数

        J(w,b)=1mmi=1L(ai,yi)=1mmi=1[yilogai+(1yi)log(1ai)] 。成本函数衡量的是在全体训练样本上的体现,越小越好。

导数计算

       根据 L(a,y)=(yloga+(1y)log(1a)) 公式计算a变量的偏导,有 da=dL(a,y)da=ya+1y1a
       根据 a=11+ez 可以求出z的导数,有 dadz=(11+ez)=ez(1)(1+ez)2=a(1a)
       根据链式法则, dz=dLdz=dLdadadz=a(1a)(ya+1y1a)=ay
                                   dw1=dLdadzdw1=x1dz
                                   dw2=dLdadzdw2=x2dz
                                   db=dz

梯度下降法

        w1=w1αdw1
        w2=w2αdw2
        b=bαdb
        dw1dw2db 在上面的导数计算中已经计算出。

在m个样本中的逻辑回归

       在m个样本中的逻辑回归的伪代码如下。

        J=0;dw1=0;dw2=0;db=0;
        fori=1tom
        z(i)=wTx(i)+b
        a(i)=δ(z(i))
        J+=[y(i)loga(i)+(1y(i)log(1a(i)))]
        dz(i)=a(i)y(i)
        dw1+=x(i)1dz(i)
        dw2+=x(i)2dz(i)
        db+=dz(i)
        J/=m
        dw1/=m
        dw2/=m
        db/=m

       使用梯度下降法进行迭代:
        w1=w1αdw1
        w2=w2αdw2
        b=bαdb
       利用上面这种方法我们使用了两个循环,一个是在计算m个样本的时候,两一个是在便利所有的特征的时候(n个dw值),这样就会大大降低程序的效率,而使用向量化能大大加快运算速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值