Catch That Cow POJ 3278 | 搜索 | bfs

学到了一个技巧:

  • 对于这种不是同类移动(比如之前都是移动一步,只是方向不一样)的情况,可以用一个for循环,之后用if来分别进行赋值。这样写的好处就是可以统一判断。
        for(int dir = 0;dir < 3;dir++)
        {
            int ct = temp.pos;
            if(dir == 0)//Walking1
                ct += 1;
            else if(dir == 1)
                ct -= 1;
            else
                ct *= 2;

            if(ct < 0 || ct > MAX_N)
                continue;

            if(vis[ct])
                continue;

            vis[ct] = 1;
            que.push({ct, temp.step+1});
        }

注意:

  • queue没有.clear(),如要清空,应:
while(!que.empty())
    que.pop();

这道题有一个点最开始卡住我了,就是BFS判断是否要入队那里的条件:>0这个不难得出,但是上界怎么确定呢?
我们已知有+1, -1, * 2两种操作,以坐标大者为前方,如果奶牛在FJ的后方,那么肯定只能一点点-1;如果奶牛在FJ的前方,我们肯定是先 * 2逼近(* 2不超过奶牛坐标时),之后再+1+1+1…
我没想明白的地方就是:比如对于6追10的情况,如果一直采用+1是4步,但假如先 * 2到达12,再-1-1-1到达10,则需要3步,所以是否会存在 * 2更优的情况呢?假使如此,BFS入队处的上限便无法判断了。
而这种想法是错误的!(还想了半天5555 队友tql
那就是,对于6追10,3步也不是最优,最优应该是先-1到达5再 * 2,共2步!
对于任何一种先 * 2再减法若干次的情况,必然存在先减法若干次再 * 2的策略使得后者至少比前者少一步!因为 * 2之后我们需要减去的是两个一!

#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>

using namespace std;

#define MAX_N 100000

int N, K, ans;//100,000
int vis[MAX_N+1];

struct node
{
    int pos, step;
};

int main()
{
    scanf("%d %d", &N, &K);//N - farmer K - cow

    queue<node> que;
    que.push({N, 0});
    vis[N] = 1;

    while(!que.empty())
    {
        node temp = que.front();
        que.pop();

        if(temp.pos == K)
        {
            ans = temp.step;
            break;
        }

        for(int dir = 0;dir < 3;dir++)
        {
            int ct = temp.pos;
            if(dir == 0)//Walking1
                ct += 1;
            else if(dir == 1)
                ct -= 1;
            else
                ct *= 2;

            if(ct < 0 || ct > MAX_N)
                continue;

            if(vis[ct])
                continue;

            vis[ct] = 1;
            que.push({ct, temp.step+1});
        }

    }

    printf("%d\n", ans);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值