学到了一个技巧:
- 对于这种不是同类移动(比如之前都是移动一步,只是方向不一样)的情况,可以用一个for循环,之后用if来分别进行赋值。这样写的好处就是可以统一判断。
for(int dir = 0;dir < 3;dir++)
{
int ct = temp.pos;
if(dir == 0)//Walking1
ct += 1;
else if(dir == 1)
ct -= 1;
else
ct *= 2;
if(ct < 0 || ct > MAX_N)
continue;
if(vis[ct])
continue;
vis[ct] = 1;
que.push({ct, temp.step+1});
}
注意:
- queue没有.clear(),如要清空,应:
while(!que.empty())
que.pop();
这道题有一个点最开始卡住我了,就是BFS判断是否要入队那里的条件:>0这个不难得出,但是上界怎么确定呢?
我们已知有+1, -1, * 2两种操作,以坐标大者为前方,如果奶牛在FJ的后方,那么肯定只能一点点-1;如果奶牛在FJ的前方,我们肯定是先 * 2逼近(* 2不超过奶牛坐标时),之后再+1+1+1…
我没想明白的地方就是:比如对于6追10的情况,如果一直采用+1是4步,但假如先 * 2到达12,再-1-1-1到达10,则需要3步,所以是否会存在 * 2更优的情况呢?假使如此,BFS入队处的上限便无法判断了。
而这种想法是错误的!(还想了半天5555 队友tql
那就是,对于6追10,3步也不是最优,最优应该是先-1到达5再 * 2,共2步!
对于任何一种先 * 2再减法若干次的情况,必然存在先减法若干次再 * 2的策略使得后者至少比前者少一步!因为 * 2之后我们需要减去的是两个一!
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
using namespace std;
#define MAX_N 100000
int N, K, ans;//100,000
int vis[MAX_N+1];
struct node
{
int pos, step;
};
int main()
{
scanf("%d %d", &N, &K);//N - farmer K - cow
queue<node> que;
que.push({N, 0});
vis[N] = 1;
while(!que.empty())
{
node temp = que.front();
que.pop();
if(temp.pos == K)
{
ans = temp.step;
break;
}
for(int dir = 0;dir < 3;dir++)
{
int ct = temp.pos;
if(dir == 0)//Walking1
ct += 1;
else if(dir == 1)
ct -= 1;
else
ct *= 2;
if(ct < 0 || ct > MAX_N)
continue;
if(vis[ct])
continue;
vis[ct] = 1;
que.push({ct, temp.step+1});
}
}
printf("%d\n", ans);
return 0;
}