沉降预测算法-直线拟合法

本文介绍了如何运用最小二乘法进行直线拟合以预测沉降值。首先,阐述了直线模型的基本方程,然后详细说明了如何通过最小二乘法求解直线方程的参数。接着,展示了代码实现过程,包括观测值类型定义、接口设计、参数拟合和数据预测函数。最后,给出了采用直线拟合得到的预测结果。
摘要由CSDN通过智能技术生成

目录

1. 直线模型

2. 最小二乘曲线拟合

3. 代码实现

4. 拟合结果

      利用最小二乘算法拟合其他沉降预测曲线的实现方法参见:常见沉降预测算法,源代码和可执行程序参见:常用沉降预测算法实现代码。 


1. 直线模型

    在沉降预测中,通常不会用直线进行拟合。这里介绍直线拟合是利用曲线最小二乘拟合基础篇进行最简单的沉降曲线拟合代码实现。直线基本方程为

{S_t} = at + b    (1)

     其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地理广域价值

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值