【离散数学-学习笔记】2024-03-19

# 图论
路径最短问题
如:旅行最短问题、工程最优问题、成本最低问题
## 图(概念、连通性、矩阵表示)
### 一、定义
一个图表示为G=<V(G),E(G)>,其中
V(G):是G的顶点的非空集合,简记为V;
E(G):是G的边得集合,简记为E;
节点(Vertices):用O(小圆圈)表示,旁边要标上该点得名称。
边(Edges)
    有向边:带箭头得弧线。从u到v得边表示为<u,v> --尖括号
    五向边:不带箭头得弧线。u和v间的边表示成(u,v)--圆括号


 **实例**
1.设V <sub>2</sub>= {v<sub>1</sub>,v<sub>2</sub>…v<sub>5</sub>},
E={(v<sub>1</sub>,v<sub>1</sub>),(v<sub>1</sub>,v<sub>2</sub>),(v<sub>2</sub>,v<sub>3</sub>),(v<sub>2</sub>,v<sub>3</sub>)(v<sub>2</sub>,v<sub>5</sub>),(v<sub>1</sub>,v<sub>5</sub>),(v<sub>4</sub>,v<sub>5</sub>)}
G<sub>1</sub>=<V<sub>1</sub>,E <sub>1</sub>>为一无向图
2.设 V<sub>2</sub>= {a, b,c, d,},
E<sub>2</sub>= {<a,a>, <a,b>,<a,b>,<c,b><c,d>,<d,c>,<a,d>}
则 G₂=<V,,E,>为一有向图
![[Pasted image 20240319090551.png]]
**相关概念**
1、图
    ① 可用G泛指图(无向的G或有向的D)
    ② V(G), E(G), V(D), E(D)
    ③ n阶图(n为顶点个数)
2.孤立点、n阶零图与平凡图
3.用e<sub>k</sub>表示无向边或有向边
4.顶点与边的关联关系
① 关联、关联次数  ② 环
5.顶点之间的相邻与邻接关系
6、多重图与简单图
    简单图:不含有环和平行边的图。
    多重图:含有平行边的图。

### **二、顶点的度**
1. 设G=<V,E>为无向图,∀v∈V,d(v)--v的度数,简称度。
  2.设D=<V,E>为有向图,∀v∈V,
    d<sup>+</sup>(v)--v的出度
    d<sup>-</sup>(v)--v的入度
    d(v)--v的度或度数
3.最大度Δ(G),最小度δ(G)
4. Δ<sup>+</sup>(D),δ<sup>+</sup>(D), Δ<sup>-</sup>(D),δ<sup>-</sup>(D),Δ(D),δ(D)
5. 5.奇度顶点与偶度顶点

4.**握手定理**
**【定理1-1】
设G=<V,E>为无向图,V = {v<sub>1</sub>,v<sub>2</sub>…v<sub>n</sub>},$\begin{vmatrix}E\end{vmatrix}$= m
$$
\sum_{n=1}^nkd(v_i)=2m
$$
证明:G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度.
**【定理1-2】设D=<V,E>为有向图,V = {v<sub>1</sub>,v<sub>2</sub>…v<sub>n</sub>},$\begin{vmatrix}E\end{vmatrix}$= m,则
$$
\sum_{n=1}^nd(v_i)=2m,且\sum_{n=1}^nd^+(v_i)=\sum_{n=1}^nd^-(v_i)=m
$$
【推论】任何(无向或有向)中,奇度顶点的个数是偶数

**5.无向图的结点度序列**
V = {v<sub>1</sub>,v<sub>2</sub>…v<sub>n</sub>}为无向图G的顶点集,称d(v<sub>1</sub>),d(v<sub>2</sub>),…, d(v<sub>n</sub>)为G的度数序列。
非负整数列d=(d<sub>1</sub>,d<sub>2</sub>,……, d<sub>n</sub>)是**可图化**的,是可**简单图化**的。

[n阶k正则图]一个无向简单图G中,如果Δ(G)=δ(G)=k,则称G为k-正则图。
![[屏幕截图 2024-03-19 095813 1.png]]

### 三、图的同构
 设G<sub>1</sub>=<V<sub>1</sub>,E <sub>1</sub>>,G<sub>2</sub>=<V<sub>2</sub>,E <sub>2</sub>>为两个无向图(有向图),若存在双射函数f:V<sub>1</sub>→V<sub>2</sub>,对于v<sub>i</sub>,v<sub>j</sub>∈V<sub>1</sub>,
     (v<sub>i</sub>,v<sub>j</sub>)∈E <sub>1</sub>当且仅当(f(v<sub>i</sub>),f(v<sub>j</sub>))∈E <sub>2</sub>
     (<v<sub>i</sub>,v<sub>j</sub>>∈E <sub>1</sub>当且仅当<f(v<sub>i</sub>),f(v<sub>j</sub>)>∈E <sub>2</sub>)
并且(v<sub>i</sub>,v<sub>j</sub>)(<v<sub>i</sub>,v<sub>j</sub>>)与(f(v<sub>i</sub>),f(v<sub>j</sub>))(<f(v<sub>i</sub>),f(v<sub>j</sub>)>)的重数(平行边的个数)相同,则称G<sub>1</sub>与G<sub>2</sub>是同构的,记作G<sub>1</sub>≅G<sub>2</sub>--等价
- 能找到同构的必要条件,但他们全不是充分条件:
    ①边数相同 ②顶点数相同 ③度数相同的顶点数相同④度数序列相同,等等。
### 四、完全图
【**无向完全图**】G是个简单图,如果每对不同顶点都有边,则称G是个无向完全图。如果G有个结点,则记作K.。
简单性质:边数 $$m=\frac{n(n-1)}{2},\Delta=\delta=n-1$$
【**有向完全图**】G是个有向简单图,如果任意两个不同顶点之间都有方向相反的边,则称它是有向完全图。
简单性质:边数 $$m=n(n-1),\Delta=\delta=2(n-1),\Delta^+=\delta^+=n-1$$
【**竞赛图**】
基图为K<sub>n</sub>的有向简单图。
![[屏幕截图 2024-03-19 165910.png]]
### 五、子图
【**定义**】G = <V,E>,G' = <V',E'>
1. G' ⊆ G----G'为G的**子图**,G为G‘的**母图**
2. 若G’ ⊆ G且V‘ = V,则称G’为G的**生成子图**
3. 若V‘ ⊂ V或E’ ⊂ E,称G‘为G的**真子图**
![[Pasted image 20240319173440.png]]
### 六、补图
【**定义**】
    设G=<V,E>为n阶无向简单图,以V为顶点集,以所有使G成为完全图K,的添加的边组成边集的图,称为G的补图,记作$\overline{\text{G}}$
若G≅$\overline{\text{G}}$,则称G是自补图。
![[Pasted image 20240319174412.png]]

### 通路与回路
【定义】给定图G = <V,E>(无向或有向的),G中顶点与边的交替序列
Ţ(伽马)= v<sub>0</sub>e<sub>1</sub>v<sub>1</sub>e<sub>2</sub>...e<sub>l</sub>v<sub>l</sub>是连接到v<sub>0</sub>到v<sub>l</sub>的通路,其中v<sub>i-1</sub>和v<sub>i</sub>是e<sub>i</sub>的端点。
    (1)通路与回路:Ţ为**通路**;若v<sub>0</sub>=v<sub>l</sub>,Ţ为**回路**,l为**回路长度**。
    (2)简单通路与回路:所有边都不相同,Ţ为简单通路,有若v<sub>0</sub>=v<sub>l</sub>,Ţ为简单回路。
    (3)初级通路(路径)与初级回路(圈):Ţ中所有顶点都不相同,则称Ţ为**初级通路(路径**),有若除v<sub>0</sub>=v<sub>l</sub>,所有的顶点各不相同,则称Ţ为**初级回路(圈)**
    (4)复杂通路与回路:有边重复出现。
【表示法】
    ①定义表示法
    ②只用边表示法
    ③只用顶点表示法(在简单图中)
    ④混合表示法
![[Pasted image 20240319180855.png]]
【**定理2-1**】在n阶图G中,若从顶点v<sub>i</sub>到v<sub>j</sub>(v<sub>i</sub>≠v<sub>j</sub>)存在通路,则从v<sub>i</sub>到v<sub>j</sub>存在长度小于或等于n-1的通路。
![[Pasted image 20240319181607.png]]
【**推论**】n阶图G中,若从顶点;到v<sub>i</sub>(v<sub>i</sub>≠v<sub>j</sub>))存在通路,从v<sub>i</sub>到v<sub>j</sub>存在长度小于或等于n-1的初级通路(路径)。
【**定理2-2**】在一个n阶图G中,若存在v<sub>i</sub>到自身的回路,则一定存在v<sub>i</sub>到自身长度小于或等于n的回路。
【**推论**】在一个n阶图G中,若存在v<sub>i</sub>到自身的简单回路,则一定存在长度小于或等于n的初级回路。

### 无向图连通性
【**两个节点连通**】在无向图中,节点u和v之间如果存在一条通路,则称u与v是连通的。记作u~v
    规定:对任何结点u,u~u。
【**结点之间的连通关系是个等价关系**】
令G=<V,E>是五向图,R是V上连通关系,即R={<u,v>|u,v∈V且u~v}显然R具有自反、对称和传递性。于是可以求商集V/R--等价类的集合,任意两个节点都是连通的。
![[Pasted image 20240319183414.png]]
【**G的连通性与连通分支**】
    ①若∀u,v∈V,u~v,则称G是连通的
    ②V/R={V<sub>1</sub>,V<sub>2</sub>,...,V<sub>k</sub>},称等价类构成的子图G[V<sub>1</sub>],G[v<sub>2</sub>],...,G[V<sub>k</sub>]为G的连通分支,其个数p(G)=k(k≥1);k=1,G是连通的。
![[Pasted image 20240319210340.png]]
【**距离**】
①u与v之间的距离:d(u,v)--u与v之间长度最短的通路。
②d(u,v)的性质:
    d(u,v)≥0,u≁v时d(u,v)=∞  //不连通时候为无穷远
    d(u,v)=d(v,u)
    d(u,v)+d(v,v)≥d(u,w)
【**删除顶点及删除边**】可以用减号
    G-v——从G中将 v及与v相关联的边去掉
    G-V'——从G中删除V’中所有的顶点
    G-e——将e从G中去掉
    G-E'——删除E‘中所有的边
【**点割集**】设无向连通图G=<V,E>,V'⊂V
V’为点割集——p(G-V')>p(G)且具有极小性。如果点割集中只有一个顶点v,则v为割点。
【**点割集**】设无向连通图G=<V,E>,E‘⊆E
E’是边割集——p(G-V')>p(G)且具有极小性。如果点割集中只有一条边e,则e为割边(桥)。
【**点割集**】/【**点割集**】的意思是删去这个集合中的点/边使得图不连通。
![[Pasted image 20240319213614.png]]
![[Pasted image 20240319213604.png]]
【**点连通度**】G为连通非完全图,ĸ(G)=min{∣V'∣|V'为点割集}为G的点连通度。
规定ĸ(G)=n-1
若G非连通,ĸ(kappa)(G)=0;若ĸ(G)=k,则称G为**k-连通图**
【**边连通度**】G为连通图,λ(G)=min{∣E'∣|E'为边割集}为G的边连通度。
若G非连通,则λ(G)=0;若λ(G)=r,则称G为**r-连通图**
【**几点说明**】
- ĸ(K<SUB>n</sub>)=λ(K<SUB>n</sub>))=n-1;G非连通,则ĸ=λ=0
- 若G中有割点,则ĸ=1;若有桥,则λ=1
- 若ĸ(G)=k,则G是1-连通图,2-连通图,...,k-连通图,但不是(k+s)-连通图,s≥1  //如果点连通度是k的话,删去的节点个数少于k,它仍然是连通图,删去k+1以上个结点就不连通咯
-  若λ(G)=r,则G是1-边连通图,2-边连通图,...,r-边连通图,但不是(r+s)-边连通图,s≥1
【**定理2-3**】  ĸ(G)≤λ(G)≤δ(G)  
//点连通度,边连通度,图的最小度
### 有向图的连通度
【**顶点间的可达性**】 D=<V,E>为有向图
    v<sub>i</sub>→v<sub>j</sub>(v<sub>i</sub>可达v<sub>j</sub>)——v<sub>i</sub>到v<sub>j</sub>有通路
    v<sub>i</sub>↔v<sub>j</sub>(v<sub>i</sub>与v<sub>j</sub>相互可达)
【**性质**】
    → 具有自反性(v<sub>i</sub>可达v<sub>i</sub>)、传递性
    ↔具有自反性、对称性、传递性
【**v<sub>i</sub>到v<sub>j</sub>的距离**】
类似于无向图中,只需要注意距离表示法的不同。
(无向图中d(v<sub>i</sub>,v<sub>j</sub>),有向图中d<v<sub>i</sub>,v<sub>j</sub>>)及<v<sub>i</sub>,v<sub>j</sub>>无对称性 
【**定义**】 D=<V,E>为有向图
    D弱连通——基图为无向连通图
    D单向连通——∀v<sub>i</sub>,v<sub>j</sub>∈V,v<sub>i</sub>→v<sub>j</sub>或v<sub>j</sub>→v<sub>i</sub> //至少一个方向上可达
    D强连通——∀v<sub>i</sub>,v<sub>j</sub>∈V,v<sub>i</sub>↔v<sub>j</sub>  //任意俩个节点相互可达 
【**定理**】D强连通当且仅当D中存在经过每个顶点至少一次的回路
![[Pasted image 20240319231951.png]]
![[Pasted image 20240319232031.png]]
## 图的矩阵表示
**1.邻接矩阵**
以结点与结点之间的邻接关系确定的矩阵。
【定义】设G = <V,E>是个简单图,V = {v<sub>1</sub>,v<sub>2</sub>,v<sub>3</sub>,…v<sub>n</sub>},一个nxn阶矩阵A=(a<sub>ij</sub>)称为邻接矩阵。
其中:$$a_{ij}=\Big\{_{0\ \ 否则}^{1\ \ v_i与v_j邻接,即(v_i,v_j)∈E或<v_i,v_j>∈E}$$ 
![[Pasted image 20240320090345.png]]**2.邻接矩阵的乘积**
    在(A(G<sub>1</sub>>))<sup>2</sup>中a<sub>34</sub><sup>2</sup>=2表示从v<sub>3</sub> 到v<sub>4</sub> 有长度为2的路有2条。
    在(A(G<sub>1</sub>>))<sup>3</sup>中a<sub>23</sub><sup>3</sup>=2表示从v<sub>2</sub> 到v<sub>3</sub> 有长度为3的路有6条。
![[Pasted image 20240320090539.png]]
【**定理3-1**】设A为有向图D的邻接矩阵,V = {v<sub>1</sub>,v<sub>2</sub>,v<sub>3</sub>,…v<sub>n</sub>}为顶点集,则A的l次幂集A<sup>l</sup>(l≥1)中的元素


## 欧拉图、哈密图 
## 最短路径
## 平面图
## 对偶与着色
## 树(定义,生成树、根树)

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值