【离散数学-学习日记】2024-3-22

图的矩阵表示(接2024-03-19)

定理3-1】设A为有向图D的邻接矩阵,V = {v1,v2,v3,…vn}为顶点集,则A的l次幂集Al(l≥1)中的元素

在这里插入图片描述

例子
在这里插入图片描述

A = [ 1 0 0 0 2 0 1 0 1 0 0 1 1 0 1 0 ]    A 2 = [ 1 0 0 0 3 0 0 1 2 0 1 0 2 0 0 1 ]   A 3 = [ 1 0 0 0 4 0 1 0 3 0 0 1 3 0 1 0 ]   A 4 = [ 1 0 0 0 5 0 0 1 4 0 1 0 4 0 0 1 ] \begin{aligned}A=\begin{bmatrix} 1&0&0&0\\ 2&0&1&0\\ 1&0&0&1\\1&0&1&0\\\end{bmatrix}\ \ A^2=\begin{bmatrix} 1&0&0&0\\ 3&0&0&1\\ 2&0&1&0\\2&0&0&1 \end{bmatrix}\ A^3=\begin{bmatrix} 1&0&0&0\\ 4&0&1&0\\ 3&0&0&1\\3&0&1&0\\ \end{bmatrix}\ A^4=\begin{bmatrix} 1&0&0&0\\ 5&0&0&1\\ 4&0&1&0\\4&0&0&1\\ \end{bmatrix}\end{aligned} A= 1211000001010010   A2= 1322000000100101  A3= 1433000001010010  A4= 1544000000100101

PS:矩阵的乘法运算


(1)中长度为1的通路为8条,其中有1条是回路。
D中长度为2的通路为11条,其中有3条是回路。
D中长度为3和4的通路分别为14和17条,回路分别为1与3条。
(2)D中长度小于等于4的通路为50条,其中有8条是回路。

2.可达矩阵
定义】 设G=<V,E>是简单图,V = {v1,v2,v3,…vn},一个n*n阶矩阵P=(pij)称为G的可达矩阵。其中:
P i j = { 0   否则 1    v i 到 v j 可达(至少有一条通路) P_{ij}=\Big\{_{0\ \ 否则}^{1\ \ v_i到v_j可达(至少有一条通路)} Pij={0  否则1  vivj可达(至少有一条通路)
【求可达矩阵】
两种方法:
(1)按照矩阵相乘分别求出A(k)(k≥2),然后∨。
(2)用求传递闭包的Warshall算法。
由定义不难看出,G强连通当且仅当P(G)为全1矩阵 //图G中任意两个顶点都是相互可达的
在这里插入图片描述
在这里插入图片描述

//由于A(2)等于A(4),我们只要求到A(4)即可
【用可达矩阵求强分图】
先将P转置的到PT,如果vi与vj相互可达,则Pij=PTij=1
以G2为例
在这里插入图片描述

//初等变换后,看可以出来v1和v3相互可达的,v2、v4、v5相互可达。可以看出来,v1和v3构成了一个强分图,v2、v4、v5构成了一个强分图。【关联矩阵
①无向图的完全关联矩阵
【定义】设G=<V,E>是无向图,V = {v1,v2,v3,…vm},E = {e1,e2,e3,…en},一个m*n阶矩阵M=(mij) 称为G的关联矩阵。其中:
m i j = { 0   否则 1    v i 到 e j 关联 m_{ij}=\Big\{_{0\ \ 否则}^{1\ \ v_i到e_j关联} mij={0  否则1  viej关联
在这里插入图片描述

定义
a)每列只有两个1
b)每列中1的个数来对应的结点的度数。
c)如果两类相同,则说明对应的两条边是平行边。
②有向图的完全关联矩阵
定义】设D=<V,E>是简单有向图,V = {v1,v2,v3,…vm},E = {e1,e2,e3,…en},一个m*n阶矩阵M=(mij) 称为G的关联矩阵。其中:
m i j = { 1       v i 是 e i 的起点 − 1    v i 是 e i 的终点 0       v i 与 e i 不关联 m_{ij}=\begin{cases}1\ \ \ \ \ v_i是e_i的起点\\-1\ \ v_i是e_i的终点\\0\ \ \ \ \ v_i与e_i不关联\end{cases} mij= 1     viei的起点1  viei的终点0     viei不关联
性质
a)每列只有一个1个一个-1。(每条边只有一个终点和一个起点)
b)每行中1的个数为对应结点的出发,-1个数是结点的入度。

欧拉图、哈密图

历史背景:哥尼斯堡七桥问题与欧拉图
在这里插入图片描述

从任意一个结点开始,经过所有边一次且仅一次,然后返回结点。
欧拉图(E图)定义
[欧拉通路]经过途中每条边一次且仅一次行遍所有顶点的通路。
[欧拉回路]经过图中每条边一次且仅一次行遍所有顶点的回路。
[欧拉图]有欧拉回路的图。
[半欧拉图]有欧拉通路而无欧拉回路的图。
在这里插入图片描述

路径:b-a→a-e→e-b→b-f→f-a→a-d→d-e→e-f→f-d→d-c→c-b
说明:
- 规定平凡图为欧拉图。
- 欧拉通路是生成的简单通路,欧拉回路是生成的简单回路。
- 环不影响图的欧拉性
欧拉图的实例
在这里插入图片描述

上图中,(1),(4)为欧拉图,(2),(5)为半欧拉图,(3),(6)既不是欧拉图,也不是半欧拉图。
定理4-1】无向图G是欧拉图当且仅当G连通且无奇度顶点。
证明: 若G为平方图成立。设G为n阶m条边的无向图
必要性 设C为G中的一条欧拉回路。显然G是连通的。
∀a∈V(G),a在C上每出现一次贡献2度,所以a为偶度顶点。由a的任意性,结论真。
充分性 通过构造方法来证明。

  1. 设G是连通图且G中每一个顶点都有偶数度,构造从G的任意顶点a开始的简单回路,建立尽量长的简单通路(a,x1),(x1,x2),…(xn-1,xn),(xn,a)进行构造。如下图中(a,f),(f,c),(c,b),(b,a)。这样的通路必然结束,因为途中的边数是有穷的。
  2. 若所有的边已用完,则欧拉回路构造完成。让否则从G中删除已经用过的边和不关联任何剩余边的顶点,的到子图H,如图中从,c,d,e构成的子图。因为G是连通的,所以H和已删除的回路至少有一个公共顶点w,然后在w上开始,构造新的回路,新的回路必然和原回路通过w拼接成G中的回路。
  3. 继续这样的过程,直到用完所有的边为止,这样就产生出欧拉回路。
    在这里插入图片描述

定理4-2】无向图G是半欧拉图当且仅当G连通且恰有两个奇度顶点。
证明: 必要性简单
充分性(利用定理4-1)设u,v为G中的两个奇度顶点,令G‘=G⋃(u,v),则G’连通且无奇度顶点,由定理4-1知G‘为欧拉图,因而存在欧拉回路C,令Γ=C-(u,v),则Γ为G中的欧拉回路。
理解: G有两个偶数度结点:就从一个奇数度结点出发,每当到达一个偶数度结点,必然可以再经过另一条边离开此结点,如此重复下去,经过所有边后到达另一个奇数度结点。

未完待续==未完待续==未完待续==未完待续==未完待续

——————————————————————————————————————————

最短路径

平面图

对偶与着色

树(定义,生成树、根树)

  • 25
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值