【离散数学--学习笔记】2024-3-19

本文详细介绍了图论的基本概念,包括图的定义、顶点度、图的同构性、完全图、子图与补图、通路与连通性、邻接矩阵的应用以及欧拉图和哈密图等。同时涵盖了最短路径问题和树的相关知识,是理解图论算法的基础内容。
摘要由CSDN通过智能技术生成

图论

路径最短问题
如:旅行最短问题、工程最优问题、成本最低问题

图(概念、连通性、矩阵表示)

一、定义

一个图表示为G=<V(G),E(G)>,其中
V(G):是G的顶点的非空集合,简记为V;
E(G):是G的边得集合,简记为E;
节点(Vertices):用O(小圆圈)表示,旁边要标上该点得名称。
边(Edges)
有向边:带箭头得弧线。从u到v得边表示为<u,v> --尖括号
五向边:不带箭头得弧线。u和v间的边表示成(u,v)–圆括号

实例
1.设V 2= {v1,v2…v5},
E={(v1,v1),(v1,v2),(v2,v3),(v2,v3)(v2,v5),(v1,v5),(v4,v5)}
G1=<V1,E 1>为一无向图
2.设 V2= {a, b,c, d,},
E2= {<a,a>, <a,b>,<a,b>,<c,b><c,d>,<d,c>,<a,d>}
则 G₂=<V,E,>为一有向图
在这里插入图片描述

相关概念
1、图
① 可用G泛指图(无向的G或有向的D)
② V(G), E(G), V(D), E(D)
③ n阶图(n为顶点个数)
2.孤立点、n阶零图与平凡图
3.用ek表示无向边或有向边
4.顶点与边的关联关系
① 关联、关联次数 ② 环
5.顶点之间的相邻与邻接关系
6、多重图与简单图
简单图:不含有环和平行边的图。
多重图:含有平行边的图。

二、顶点的度

  1. 设G=<V,E>为无向图,∀v∈V,d(v)–v的度数,简称度。
    2.设D=<V,E>为有向图,∀v∈V,
    d+(v)–v的出度
    d-(v)–v的入度
    d(v)–v的度或度数
    3.最大度Δ(G),最小度δ(G)
  2. Δ+(D),δ+(D), Δ-(D),δ-(D),Δ(D),δ(D)
  3. 5.奇度顶点与偶度顶点

4.握手定理
定理1-1
设G=<V,E>为无向图,V = {v1,v2…vn}, ∣ E ∣ \begin{vmatrix}E\end{vmatrix} E = m
∑ n = 1 n k d ( v i ) = 2 m \sum_{n=1}^nkd(v_i)=2m n=1nkd(vi)=2m
证明:G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度.
定理1-2】设D=<V,E>为有向图,V = {v1,v2…vn}, ∣ E ∣ \begin{vmatrix}E\end{vmatrix} E = m,则
∑ n = 1 n d ( v i ) = 2 m , 且 ∑ n = 1 n d + ( v i ) = ∑ n = 1 n d − ( v i ) = m \sum_{n=1}^nd(v_i)=2m,且\sum_{n=1}^nd^+(v_i)=\sum_{n=1}^nd^-(v_i)=m n=1nd(vi)=2m,n=1nd+(vi)=n=1nd(vi)=m
推论】任何(无向或有向)中,奇度顶点的个数是偶数

5.无向图的结点度序列
V = {v1,v2…vn}为无向图G的顶点集,称d(v1),d(v2),…, d(vn)为G的度数序列。
非负整数列d=(d1,d2,……, dn)是可图化的,是可简单图化的。

[n阶k正则图]一个无向简单图G中,如果Δ(G)=δ(G)=k,则称G为k-正则图。
每个顶点的度都是一样的

三、图的同构

设G1=<V1,E 1>,G2=<V2,E 2>为两个无向图(有向图),若存在双射函数f:V1→V2,对于vi,vj∈V1,
(vi,vj)∈E 1当且仅当(f(vi),f(vj))∈E 2
(<vi,vj>∈E 1当且仅当<f(vi),f(vj)>∈E 2)
并且(vi,vj)(<vi,vj>)与(f(vi),f(vj))(<f(vi),f(vj)>)的重数(平行边的个数)相同,则称G1与G2是同构的,记作G1≅G2–等价

  • 能找到同构的必要条件,但他们全不是充分条件:
    ①边数相同 ②顶点数相同 ③度数相同的顶点数相同④度数序列相同,等等。

四、完全图

无向完全图】G是个简单图,如果每对不同顶点都有边,则称G是个无向完全图。如果G有个结点,则记作K.。
简单性质:边数 m = n ( n − 1 ) 2 , Δ = δ = n − 1 m=\frac{n(n-1)}{2},\Delta=\delta=n-1 m=2n(n1),Δ=δ=n1
有向完全图】G是个有向简单图,如果任意两个不同顶点之间都有方向相反的边,则称它是有向完全图。
简单性质:边数 m = n ( n − 1 ) , Δ = δ = 2 ( n − 1 ) , Δ + = δ + = n − 1 m=n(n-1),\Delta=\delta=2(n-1),\Delta^+=\delta^+=n-1 m=n(n1),Δ=δ=2(n1),Δ+=δ+=n1
竞赛图
基图为Kn的有向简单图。
在这里插入图片描述

五、子图

定义】G = <V,E>,G’ = <V’,E’>

  1. G’ ⊆ G----G’为G的子图,G为G‘的母图
  2. 若G’ ⊆ G且V‘ = V,则称G’为G的生成子图
  3. 若V‘ ⊂ V或E’ ⊂ E,称G‘为G的真子图
    在这里插入图片描述

六、补图

定义
设G=<V,E>为n阶无向简单图,以V为顶点集,以所有使G成为完全图K,的添加的边组成边集的图,称为G的补图,记作 G ‾ \overline{\text{G}} G
若G≅ G ‾ \overline{\text{G}} G,则称G是自补图。
G1,G2,G3都是K的补图

通路与回路

【定义】给定图G = <V,E>(无向或有向的),G中顶点与边的交替序列
Ţ(伽马)= v0e1v1e2…elvl是连接到v0到vl的通路,其中vi-1和vi是ei的端点。
(1)通路与回路:Ţ为通路;若v0=vl,Ţ为回路,l为回路长度
(2)简单通路与回路:所有边都不相同,Ţ为简单通路,有若v0=vl,Ţ为简单回路。
(3)初级通路(路径)与初级回路(圈):Ţ中所有顶点都不相同,则称Ţ为初级通路(路径),有若除v0=vl,所有的顶点各不相同,则称Ţ为初级回路(圈)
(4)复杂通路与回路:有边重复出现。
【表示法】
①定义表示法
②只用边表示法
③只用顶点表示法(在简单图中)
④混合表示法
在这里插入图片描述

定理2-1】在n阶图G中,若从顶点vi到vj(vi≠vj)存在通路,则从vi到vj存在长度小于或等于n-1的通路。
在这里插入图片描述

推论】n阶图G中,若从顶点;到vi(vi≠vj))存在通路,从vi到vj存在长度小于或等于n-1的初级通路(路径)。
定理2-2】在一个n阶图G中,若存在vi到自身的回路,则一定存在vi到自身长度小于或等于n的回路。
推论】在一个n阶图G中,若存在vi到自身的简单回路,则一定存在长度小于或等于n的初级回路。

无向图连通性

两个节点连通】在无向图中,节点u和v之间如果存在一条通路,则称u与v是连通的。记作u~v
规定:对任何结点u,u~u。
结点之间的连通关系是个等价关系
令G=<V,E>是五向图,R是V上连通关系,即R={<u,v>|u,v∈V且u~v}显然R具有自反、对称和传递性。于是可以求商集V/R–等价类的集合,任意两个节点都是连通的。
在这里插入图片描述

G的连通性与连通分支
①若∀u,v∈V,u~v,则称G是连通的
②V/R={V1,V2,…,Vk},称等价类构成的子图G[V1],G[v2],…,G[Vk]为G的连通分支,其个数p(G)=k(k≥1);k=1,G是连通的。
在这里插入图片描述

距离
①u与v之间的距离:d(u,v)–u与v之间长度最短的通路。
②d(u,v)的性质:
d(u,v)≥0,u≁v时d(u,v)=∞ //不连通时候为无穷远
d(u,v)=d(v,u)
d(u,v)+d(v,v)≥d(u,w)
删除顶点及删除边】可以用减号
G-v——从G中将 v及与v相关联的边去掉
G-V’——从G中删除V’中所有的顶点
G-e——将e从G中去掉
G-E’——删除E‘中所有的边
点割集】设无向连通图G=<V,E>,V’⊂V
V’为点割集——p(G-V’)>p(G)且具有极小性。如果点割集中只有一个顶点v,则v为割点。
点割集】设无向连通图G=<V,E>,E‘⊆E
E’是边割集——p(G-V’)>p(G)且具有极小性。如果点割集中只有一条边e,则e为割边(桥)。
点割集】/【点割集】的意思是删去这个集合中的点/边使得图不连通。
在这里插入图片描述
在这里插入图片描述

点连通度】G为连通非完全图,ĸ(G)=min{∣V’∣|V’为点割集}为G的点连通度。
规定ĸ(G)=n-1
若G非连通,ĸ(kappa)(G)=0;若ĸ(G)=k,则称G为k-连通图
边连通度】G为连通图,λ(G)=min{∣E’∣|E’为边割集}为G的边连通度。
若G非连通,则λ(G)=0;若λ(G)=r,则称G为r-连通图
几点说明

  • ĸ(Kn)=λ(Kn))=n-1;G非连通,则ĸ=λ=0
  • 若G中有割点,则ĸ=1;若有桥,则λ=1
  • 若ĸ(G)=k,则G是1-连通图,2-连通图,…,k-连通图,但不是(k+s)-连通图,s≥1 //如果点连通度是k的话,删去的节点个数少于k,它仍然是连通图,删去k+1以上个结点就不连通咯
  • 若λ(G)=r,则G是1-边连通图,2-边连通图,…,r-边连通图,但不是(r+s)-边连通图,s≥1
    定理2-3】 ĸ(G)≤λ(G)≤δ(G)
    //点连通度,边连通度,图的最小度

有向图的连通度

顶点间的可达性】 D=<V,E>为有向图
vi→vj(vi可达vj)——vi到vj有通路
vi↔vj(vi与vj相互可达)
性质
→ 具有自反性(vi可达vi)、传递性
↔具有自反性、对称性、传递性
vi到vj的距离
类似于无向图中,只需要注意距离表示法的不同。
(无向图中d(vi,vj),有向图中d<vi,vj>)及<vi,vj>无对称性
定义】 D=<V,E>为有向图
D弱连通——基图为无向连通图
D单向连通——∀vi,vj∈V,vi→vj或vj→vi //至少一个方向上可达
D强连通——∀vi,vj∈V,vi↔vj //任意俩个节点相互可达
定理】D强连通当且仅当D中存在经过每个顶点至少一次的回路

在这里插入图片描述
在这里插入图片描述

图的矩阵表示

1.邻接矩阵
以结点与结点之间的邻接关系确定的矩阵。
【定义】设G = <V,E>是个简单图,V = {v1,v2,v3,…vn},一个nxn阶矩阵A=(aij)称为邻接矩阵。
其中: a i j = { 0   否则 1    v i 与 v j 邻接,即( v i , v j ) ∈ E 或 < v i , v j > ∈ E a_{ij}=\Big\{_{0\ \ 否则}^{1\ \ v_i与v_j邻接,即(v_i,v_j)∈E或<v_i,v_j>∈E} aij={0  否则1  vivj邻接,即(vivjE<vivj>∈E
在这里插入图片描述

2.邻接矩阵的乘积
在(A(G1>))2中a342=2表示从v3 到v4 有长度为2的路有2条。
在(A(G1>))3中a233=2表示从v2 到v3 有长度为3的路有6条。
在这里插入图片描述

定理3-1】设A为有向图D的邻接矩阵,V = {v1,v2,v3,…vn}为顶点集,则A的l次幂集Al(l≥1)中的元素

未完待续==未完待续==未完待续==未完待续==未完待续

——————————————————————————————————————————

欧拉图、哈密图

最短路径

平面图

对偶与着色

树(定义,生成树、根树)

未完待续

  • 73
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值