监督,无监督以及自监督之间的区别

  • 首先比较监督和无监督学习,其最主要的区别在于模型在训练时是否需要人工标注的标签信息。
  • 监督学习利用大量的标注数据来训练模型,模型的预测和数据的真实标签产生损失后进行反向传播,通过不断的学习,最终可以获得识别新样本的能力。
  • 无监督学习不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,比如聚类相关的任务。
  • 和无监督学习不同,自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。换句话说自监督学习的监督信息不是人工标注的,而是算法在大规模无监督数据中自动构造监督信息,来进行监督学习或训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yhblog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值