-
下采样(subsampled),或称为降采样(downsampled),指缩小图像。其主要目是使得图像符合显示区域的大小,生成对应图像的缩略图。
-
池化(Pooling)则是卷积神经网络中一个重要的概念,它是降采样的一种形式。它会压缩输入的特征图,一方面减少了特征,导致了参数减少,进而简化了卷积网络计算时的复杂度;另一方面保持了特征的某种不变性(旋转、平移、伸缩等)。
-
池化的方法:
max-pooling:对邻域内特征点取最大值;
mean-pooling:对邻域内特征点求平均。 -
池化的作用:
降维,减少网络要学习的参数数量;
防止过拟合;
扩大感受野;
实现不变性(平移、旋转、尺度不变性) -
关于池化的解释:
池化 = 涨水
池化的过程 = 升高水位(扩大矩阵网格)
池化的目的是为了得到物体的边缘形状。 -
下采样和池化应该是包含关系,池化属于下采样,而下采样不局限于池化,如果卷积 stride=2,此时也可以把这种卷积叫做下采样。
下采样和池化的区别
最新推荐文章于 2023-07-14 10:42:24 发布