卷积下采样和池化的区别

本文探讨卷积神经网络中卷积下采样与池化操作的区别。池化通常用于降低维度和防止过拟合,包括max-pooling和mean-pooling两种方法。然而,池化可能会丢失部分信息,而卷积下采样能更好地融合信息。在较深的网络中,多层卷积可以替代池化,提供所需的非线性特性。
摘要由CSDN通过智能技术生成

池化

        通常池化层紧跟在 CNN 的卷积层之后。

池化方法:

  1. max-pooling:对邻域内特征点取最大值
  2. mean-pooling:对邻域内特征点求平均

池化的作用:

  1. 降维,减少网络要学习的参数数量
  2. 防止过拟合
  3. 扩大感受野
  4. 实现不变性(平移、旋转、尺度不变性)

        池化下采样比较粗暴,可能将有用的信息滤除掉,而卷积下采样过程控制了步进大小,信息融合较好,现在池化操作较少的被采用。

        pooling提供了一种非线性,这种非线性需要较深的conv叠加才能实现,因此当网络比较浅的时候,pooling有一定优势;但是当网络很深的时候,多层叠加的conv可以学到pooling所能提供的非线性,甚至能根据训练集学到比pooling更好的非线性,因此当网络比较深的时候,不使用pooling没多大关系,甚至更好。                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋水 墨色

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值