深度学习原理11——池化和下采样

池化和卷积类似,但是计算方法不一样,分为最大池化和平均池化,就是对所有相应位置的数求最大或平均值,一般用来降维,将高和宽。而1*1卷积中的降维降的是通道数的维度。
池化的参数为0,就是不用参数

下采样:通过池化等方式减少特征图的宽和高就叫下采样。

在这里插入图片描述

最大池化代码实现

def pooling(feature_map, size=2, stride=2):
    """
    最大池化实现
    :param feature_map: 特征图
    :param size: 池化大小
    :param stride: 步长
    :return:
    """
    # 1、准备池化层的输出初始化
    pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),
                            np.uint16((feature_map.shape[1] - size + 1) / stride + 1),
                            feature_map.shape[-1]))

    # 2、循环取出每个方格当中的最大值作为新的输出
    for map_num in range(feature_map.shape[-1]):
        # 获取左上角横初始下标
        r2 = 0
        for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
            # 获取左上角纵初始下标
            c2 = 0
            for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
                pool_out[r2, c2, map_num] = np.max([feature_map[r:r + size, c:c + size, map_num]])
                c2 = c2 + 1
            r2 = r2 + 1
    return pool_out
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓码bigdata

如果文章给您带来帮助,感谢打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值