CID算法和FCID算法原理介绍

CID(Constrained Iterative Deconvolution)算法

CID算法是Richards, Mark在1988年提出的,大大降低了解卷积对信噪比的要求。对于原始的解卷积问题可以表示为
Σ ( ω ) = Y ( ω ) − N ( ω ) H ( ω ) \Sigma \left( \omega \right)=\frac{Y\left( \omega \right)-N\left( \omega \right)}{H\left( \omega \right)} Σ(ω)=H(ω)Y(ω)N(ω)
将其重写,可以得到
Σ ( ω ) = Y ( ω ) H ( ω ) = a × H ∗ ( ω ) × Y ( ω ) a × ∣ H ( ω ) 2 ∣ = a × H ∗ ( ω ) × Y ( ω ) { 1 − ( 1 − a × ∣ H ( ω ) 2 ∣ ) } = a { ∑ n = 0 ∞ ( 1 − a × ∑ ∣ H ( ω ) 2 ∣ ) n } H ∗ ( ω ) Y ( ω ) \begin{aligned} & \Sigma \left( \omega \right)=\frac{Y\left( \omega \right)}{H\left( \omega \right)}=\frac{a\times {{H}^{*}}\left( \omega \right)\times Y\left( \omega \right)}{a\times \left| H{{\left( \omega \right)}^{2}} \right|}=\frac{a\times {{H}^{*}}\left( \omega \right)\times Y\left( \omega \right)}{\{1-(1-a\times \left| H{{\left( \omega \right)}^{2}} \right|)\}} \\ & =a\left\{ {{\sum\limits_{n=0}^{\infty }{\left( 1-a\times \sum\limits_{{}}^{{}}{\left| H{{\left( \omega \right)}^{2}} \right|} \right)}}^{n}} \right\}{{H}^{*}}\left( \omega \right)Y\left( \omega \right) \\ & \end{aligned} Σ(ω)=H(ω)Y(ω)=a×H(ω)2a×H(ω)×Y(ω)={1(1a×H(ω)2)}a×H(ω)×Y(ω)=a{n=0(1a×H(ω)2)n}H(ω)Y(ω)
式中: H ∗ ( ω ) {{H}^{*}}\left( \omega \right) H(ω)表示 H ( ω ) H\left( \omega \right) H(ω)的共轭。当
∥ 1 -a × ∣ H i ( ω ) ∣ 2 ∥ < 1 , a { ∑ n = 0 ∞ ( 1 − a × ∑ ∣ H i ( ω ) 2 ∣ ) n } \left\| 1\text{-a}\times {{\left| {{H}_{i}}\left( \omega \right) \right|}^{2}} \right\|<1,a\left\{ {{\sum\limits_{n=0}^{\infty }{\left( 1-a\times \sum\limits_{{}}^{{}}{\left| {{H}_{i}}{{\left( \omega \right)}^{2}} \right|} \right)}}^{n}} \right\} 1-a×Hi(ω)2<1,a{n=0(1a×Hi(ω)2)n}
,上式收敛于 1 / ∣ H i ( ω ) ∣ 2 {1}/{{{\left| {{H}_{i}}\left( \omega \right) \right|}^{2}}} 1/Hi(ω)2,因此需要选择合理的 a a a来满足上式。

H ′ ( ω ) = H ( ω ) × H ∗ ( ω ) , Y ′ ( ω ) = Y ( ω ) × H ∗ ( ω ) {H}'\left( \omega \right)=H\left( \omega \right)\times {{H}^{*}}\left( \omega \right),{Y}'\left( \omega \right)=Y\left( \omega \right)\times {{H}^{*}}\left( \omega \right) H(ω)=H(ω)×H(ω),Y(ω)=Y(ω)×H(ω)
利用迭代算法重新计算上式,可以得到
Σ k + 1 ( ω ) = a Y ′ ( ω ) + ( 1 − a H ′ ( ω ) ) Σ k ( ω ) k = 0 , 1 , 2 ⋯ {{\Sigma }_{k+1}}\left( \omega \right)=a{Y}'\left( \omega \right)+\left( 1-a{H}'\left( \omega \right) \right){{\Sigma }_{k}}\left( \omega \right)k=0,1,2\cdots Σk+1(ω)=aY(ω)+(1aH(ω))Σk(ω)k=0,1,2
初始化 Σ 0 = a Y ′ ( ω ) {{\Sigma }_{0}}=a{Y}'\left( \omega \right) Σ0=aY(ω),但是上式的求解容易受到噪声的影响,并且由于迭代过程负值没有及时被剔除而存在严重的“振铃”效应。观测数据的接收不可能存在负值,因此,在每次迭代的过程中可以先将负值剔除然后再进行迭代,这样就可以缓解最终结果出现的“振铃”效应,即
Σ k + 1 ( ω ) = F { P { F − 1 [ a Y ′ ( ω ) + ( 1 − a H ′ ( ω ) ) Σ k ( ω )    ⁣ ⁣ ]  ⁣ ⁣    ⁣ ⁣ }  ⁣ ⁣    ⁣ ⁣ }  ⁣ ⁣  k=0,1,2 ⋯ {{\Sigma }_{k+1}}\left( \omega \right)=F\{P\{{{F}^{-1}}[a{Y}'\left( \omega \right)+\left( 1-a{H}'\left( \omega \right) \right){{\Sigma }_{k}}\left( \omega \right)\text{ }\!\!]\!\!\text{ }\!\!\}\!\!\text{ }\!\!\}\!\!\text{ }\text{k=0,1,2}\cdots Σk+1(ω)=F{P{F1[aY(ω)+(1aH(ω))Σk(ω) ] } } k=0,1,2
式中: F ( ∙ ) F\left( \bullet \right) F()表示傅里叶变换, F − 1 ( ∙ ) {{F}^{-1}}\left( \bullet \right) F1()表示傅里叶反变换, P ( ∙ ) P\left( \bullet \right) P()表示去除数据中出现的负值。上述操作可以在较低信噪比的情况下分辨出同一距离向的不同目标,但是计算量过于繁重,下面将介绍CID的快速算法FCID。

FCID(Fast Constrained Iterative Deconvolution)算法

Σ ( ω ) \Sigma \left( \omega \right) Σ(ω)重写可以得到
Σ ( ω ) = a { ∑ n = 0 ∞ ( 1 − a H ′ ( ω ) ) n } Y ′ ( ω ) = a { 1 + ( 1 − a H ′ ( ω ) ) + ( 1 − a H ′ ( ω ) ) 2 + ⋯   } \Sigma \left( \omega \right)=a\left\{ {{\sum\limits_{n=0}^{\infty }{\left( 1-a{H}'\left( \omega \right) \right)}}^{n}} \right\}{Y}'\left( \omega \right)\text{=}a\left\{ 1+\left( 1-a{H}'\left( \omega \right) \right)+{{\left( 1-a{H}'\left( \omega \right) \right)}^{2}}+\cdots \right\} Σ(ω)=a{n=0(1aH(ω))n}Y(ω)=a{1+(1aH(ω))+(1aH(ω))2+}
从上式中可以看出,迭代求解中有公因子 1 − a H ′ ( ω ) 1-a{H}'\left( \omega \right) 1aH(ω),令 T ( ω ) = 1 − a H ′ ( ω ) T\left( \omega \right)=1-a{H}'\left( \omega \right) T(ω)=1aH(ω),则上式可以表示为
Σ ( ω ) = a { 1 + T ( ω ) + T ( ω ) 2 + T ( ω ) 3 + ⋯   } Y ′ ( ω ) = a { ( 1 + T ( ω ) ) + T ( ω ) 2 ( 1 + T ( ω ) ) + T ( ω ) 4 ( 1 + T ( ω ) ) + ⋯   } Y ′ ( ω ) = a { ( 1 + T ( ω ) ) ( 1 + T ( ω ) 2 + T ( ω ) 4 + T ( ω ) 6 + ⋯   ) } Y ′ ( ω ) = a Y ′ ( ω ) ∏ n = 1 ∞ ( 1 + T ( ω ) 2 n ) \begin{aligned} & \Sigma \left( \omega \right)=a\left\{ 1+T\left( \omega \right)+T{{\left( \omega \right)}^{2}}+T{{\left( \omega \right)}^{3}}+\cdots \right\}{Y}'\left( \omega \right) \\ & =a\left\{ \left( 1+T\left( \omega \right) \right)+T{{\left( \omega \right)}^{2}}\left( 1+T\left( \omega \right) \right)+T{{\left( \omega \right)}^{4}}\left( 1+T\left( \omega \right) \right)+\cdots \right\}{Y}'\left( \omega \right) \\ & =a\left\{ \left( 1+T\left( \omega \right) \right)\left( 1+T{{\left( \omega \right)}^{2}}+T{{\left( \omega \right)}^{4}}\text{+}T{{\left( \omega \right)}^{6}}+\cdots \right) \right\}{Y}'\left( \omega \right) \\ & =a{Y}'\left( \omega \right)\prod\limits_{n=1}^{\infty }{\left( 1+T{{\left( \omega \right)}^{2n}} \right)} \end{aligned} Σ(ω)=a{1+T(ω)+T(ω)2+T(ω)3+}Y(ω)=a{(1+T(ω))+T(ω)2(1+T(ω))+T(ω)4(1+T(ω))+}Y(ω)=a{(1+T(ω))(1+T(ω)2+T(ω)4+T(ω)6+)}Y(ω)=aY(ω)n=1(1+T(ω)2n)
则可以用上式写出FCID的迭代过程
{ T k + 1 = T k ( ω ) 2 Σ k + 1 ( ω ) = ( 1 + T k ( ω ) ) Σ k ( ω ) k = 0 , 1.2 ⋯ \left\{ \begin{aligned} & {{T}_{k+1}}={{T}_{k}}{{\left( \omega \right)}^{2}} \\ & {{\Sigma }_{k+1}}\left( \omega \right)=\left( 1+{{T}_{k}}\left( \omega \right) \right){{\Sigma }_{k}}\left( \omega \right) \\ \end{aligned} \right.k=0,1.2\cdots {Tk+1=Tk(ω)2Σk+1(ω)=(1+Tk(ω))Σk(ω)k=0,1.2
式中:初始化 T 0 = 1 − a H ′ ( ω ) Σ 0 ( ω ) = a Y ′ ( ω ) {{T}_{0}}=1-a{H}'\left( \omega \right){{\Sigma }_{0}}\left( \omega \right)=a{Y}'\left( \omega \right) T0=1aH(ω)Σ0(ω)=aY(ω)

从推导过程可以看出FCID算法的运算速度比CID算法的运算速度要快很多,即CID算法运算 N N N次,则FCID算法只需要运算 log ⁡ 2 N {{\log }_{2}}N log2N次就可以达到相同的效果,但是同样需要注意的是由于每次迭代的过程中可能会产生负值,造成“振铃”效应,所以在迭代的过程中需要将负值剔除。再者就是因为FCID算法可以大大提升运算的速度,这样就会造成去除负值的次数减少,从而造成噪声的累积,会对最终的成像效果造成一定的影响。实际应用过程中通常采用两者的结合:先用FCID算法将原始目标区分出来,再用CID算法减小噪声的影响,提高最终的成像效果。

参考文献

[1] R. W. Schafer, R. M. Mersereau and M. A. Richards, “Constrained iterative restoration algorithms,” in Proceedings of the IEEE, vol. 69, no. 4, pp. 432-450, April 1981, doi: 10.1109/PROC.1981.11987.
[2] M. A. Richards, “Iterative noncoherent angular superresolution (radar),” Proceedings of the 1988 IEEE National Radar Conference, 1988, pp. 100-105, doi: 10.1109/NRC.1988.10940.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值