基于贝叶斯准则的超分辨算法原理介绍

贝叶斯准则

阵列方位向输出结果可以表示为
y = H x + n y=Hx\text{+}n y=Hx+n
式中: H ∈ R L × L H\in {{R}^{L\times L}} HRL×L表示卷积核循环矩阵, y ∈ R L × 1 y\in {{R}^{L\times 1}} yRL×1表示观测结果, x ∈ R L × 1 x\in {{R}^{L\times 1}} xRL×1表示目标散射信息, n ∈ R L × 1 n\in {{R}^{L\times 1}} nRL×1表示引入的加性噪声。由贝叶斯理论可知,在给定输出结果 y y y的条件下, x x x的后验概率可以表示为
p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) p(x|y)=\frac{p(y|x)p(x)}{p(y)} p(xy)=p(y)p(yx)p(x)
式中: p ( x ∣ y ) p(x|y) p(xy)表示给定 y y y的条件下 x x x的后验概率, p ( x ) p(x) p(x)表示目标散射信息的先验概率分布, p ( y ∣ x ) p\left( y|x \right) p(yx)表示似然函数分布, p ( y ) p(y) p(y)为接收信息的先验概率分布。

最大后验概率估计的特点就是引入了原始信号的先验概率分布函数,可以获得关于 x x x的最大后验概率分布函数 p ( x ∣ y ) p(x|y) p(xy),可以表示为
f = arg ⁡ max ⁡ p ( x ∣ y ) =arg max p ( y ∣ x ) p ( x ) p ( y ) f=\arg \max p(x|y)\text{=arg max}\frac{p(y|x)p(x)}{p(y)} f=argmaxp(xy)=arg maxp(y)p(yx)p(x)
上式中 p ( y ) p(y) p(y)不是关于 x x x的函数,其可以表示为
f = arg ⁡ max ⁡ p ( y ∣ x ) p ( x ) f=\arg \max p(y|x)p(x) f=argmaxp(yx)p(x)
上述方法称为最大后验估计方法。一般情况下在无法获取 x x x的先验信息时,通常认为 p ( x ) p\left( x \right) p(x)是均匀分布,在这种情况下通过上式可以获得关于 x x x的最大似然函数 p ( y ∣ x ) p(y|x) p(yx),这种方法称为最大似然估计方法。

最大似然准则

最大似然准则
y = P o s s i o n ( H x ) + P o s s i o n ( b ) + G a u s s i a n ( n ) y=Possion(Hx)+Possion(b)+Gaussian\left( n \right) y=Possion(Hx)+Possion(b)+Gaussian(n)
式中: b b b表示原始场景目标的环境噪声, n n n表示接收机存在的加性高斯噪声,根据信号的先验信息来选择合适的取值。接收信号的期望值是不含有高斯噪声的,可以表示为
y i ^ = ∑ j = 1 L H i j x j + b i \widehat{{{y}_{i}}}=\sum\limits_{j=1}^{L}{{{H}_{ij}}{{x}_{j}}+{{b}_{i}}} yi =j=1LHijxj+bi
接收信号的各点元素的似然分布函数可以表示为
p ( y i ∣ x ) = ∑ N = 0 + ∞ e − ( H x + b ) i ( H x + b ) i N N ! 1 2 π ε 2 e − ( x i − N ) 2 2 ε 2 p({{y}_{i}}|x)=\sum\limits_{N=0}^{+\infty }{\frac{{{e}^{-{{(Hx+b)}_{i}}}}(Hx+b)_{i}^{N}}{N!}}\frac{1}{\sqrt{2\pi {{\varepsilon }^{2}}}}{{e}^{-\frac{{{({{x}_{i}}-N)}^{2}}}{2{{\varepsilon }^{2}}}}} p(yix)=N=0+N!e(Hx+b)i(Hx+b)iN2πε2 1e2ε2(xiN)2
设接收信号各点元素都相互独立,那么混合分布的联合概率密度函数可以表示为
p ( y ∣ x ) = ∏ i = 1 L ( ∑ N = 0 + ∞ e − ( H x + b ) i ( H x + b ) i N N ! 1 2 π ε 2 e − ( x i − N ) 2 2 ε 2 ) p(y|x)=\prod\limits_{i=1}^{L}{\left( \sum\limits_{N=0}^{+\infty }{\frac{{{e}^{-{{(Hx+b)}_{i}}}}(Hx+b)_{i}^{N}}{N!}}\frac{1}{\sqrt{2\pi {{\varepsilon }^{2}}}}{{e}^{-\frac{{{({{x}_{i}}-N)}^{2}}}{2{{\varepsilon }^{2}}}}} \right)} p(yx)=i=1L(N=0+N!e(Hx+b)i(Hx+b)iN2πε2 1e2ε2(xiN)2)

为了实际中运算的方便,对上式取对数并且取反可以得到
− ln ⁡ [ p ( y ∣ x ) ] ∝ J ( x ) = ∑ i = 1 L [ ( H x + b ) i − ln ⁡ ( ∑ N = 0 + ∞ ( H x + b ) i N N ! 1 2 π ε 2 e − ( x i − N ) 2 2 ε 2 ) ] -\ln \left[ p(y|x) \right]\propto J(x)=\sum\limits_{i=1}^{L}{\left[ {{(Hx+b)}_{i}}-\ln \left( \sum\limits_{N=0}^{+\infty }{\frac{(Hx+b)_{i}^{N}}{N!}}\frac{1}{\sqrt{2\pi {{\varepsilon }^{2}}}}{{e}^{-\frac{{{({{x}_{i}}-N)}^{2}}}{2{{\varepsilon }^{2}}}}} \right) \right]} ln[p(yx)]J(x)=i=1L[(Hx+b)iln(N=0+N!(Hx+b)iN2πε2 1e2ε2(xiN)2)]

求取原函数的最大值等价于求 J ( x ) J(x) J(x)的最小值,对上式进行关于 x x x求导可以得到
∂ ln ⁡ J ( x ) ∂ x i = ∑ i = 1 L H i j − ∑ i = 1 L H i j ϕ i ( x ) φ i ( x ) = 0 \frac{\partial \ln J(x)}{\partial {{x}_{i}}}=\sum\limits_{i=1}^{L}{{{H}_{ij}}-}\sum\limits_{i=1}^{L}{{{H}_{ij}}\frac{{{\phi }_{i}}(x)}{{{\varphi }_{i}}(x)}}=0 xilnJ(x)=i=1LHiji=1LHijφi(x)ϕi(x)=0
式中:
ϕ i ( x ) = ϕ ( ( H x + b ) i , y i ) = ∑ k = 0 + ∞ ( H x + b ) i k k ! e − ( k − y i ) 2 2 ε 2 {{\phi }_{i}}(x)=\phi ({{(Hx+b)}_{i}},{{y}_{i}})\text{=}\sum\limits_{k=0}^{+\infty }{\frac{(Hx+b)_{i}^{k}}{k!}}{{e}^{-\frac{{{\left( k-{{y}_{i}} \right)}^{2}}}{2{{\varepsilon }^{2}}}}} ϕi(x)=ϕ((Hx+b)i,yi)=k=0+k!(Hx+b)ike2ε2(kyi)2
φ i ( x ) = φ ( ( H x + b ) i , y i ) = ∑ k = 0 + ∞ ( H x + b ) i k k ! e − ( k + 1 − y i ) 2 2 ε 2 {{\varphi }_{i}}(x)=\varphi ({{(Hx+b)}_{i}},{{y}_{i}})\text{=}\sum\limits_{k=0}^{+\infty }{\frac{(Hx+b)_{i}^{k}}{k!}}{{e}^{-\frac{{{\left( k\text{+}1-{{y}_{i}} \right)}^{2}}}{2{{\varepsilon }^{2}}}}} φi(x)=φ((Hx+b)i,yi)=k=0+k!(Hx+b)ike2ε2(k+1yi)2
重新定义一个向量 h h h,其中 h j = ∑ i = i L H i j {{h}_{j}}=\sum\limits_{i=i}^{L}{{{H}_{ij}}} hj=i=iLHij,则上式可以表示为
∑ i = 1 L H i j φ i ( x ) ϕ i ( x ) = h j \sum\limits_{i=1}^{L}{{{H}_{ij}}\frac{{{\varphi }_{i}}(x)}{{{\phi }_{i}}(x)}}={{h}_{j}} i=1LHijϕi(x)φi(x)=hj
进一步地
H T ( φ ( x ) ϕ ( x ) ) = h {{H}^{T}}\left( \frac{\varphi (x)}{\phi (x)} \right)=h HT(ϕ(x)φ(x))=h
采用Picard迭代方法对上式进行求解可以得到
x k + 1 = H T ( φ ( x k ) ϕ ( x k ) ) x k h {{x}^{k+1}}={{H}^{T}}\left( \frac{\varphi ({{x}^{k}})}{\phi ({{x}^{k}})} \right)\frac{{{x}^{k}}}{h} xk+1=HT(ϕ(xk)φ(xk))hxk

式中: k k k表示迭代的次数,一般情况下令初始值 x 0 = y {{x}^{0}}=y x0=y,同时对波束方向图进行归一化处理,即 h j = ∑ i = i L H i j = 1 {{h}_{j}}=\sum\limits_{i=i}^{L}{{{H}_{ij}}}=1 hj=i=iLHij=1

由于上式属于非线性迭代过程,在每次迭代中都会产生新的频率分量,实现频谱的外推,进而实现角度超分辨。考虑到实际情况, φ ( x ) ϕ ( x ) \frac{\varphi (x)}{\phi (x)} ϕ(x)φ(x)严格为正,同时卷积核矩阵非零,因此若迭代过程中 x 0 > 0 {{x}^{0}}>0 x0>0,则每次迭代的结果都有 x k > 0 {{x}^{k}}>0 xk>0,所以重写可以得到
x k + 1 = x k + x k h ( H T φ ( x k ) ϕ ( x k ) − h ) {{x}^{k+1}}={{x}^{k}}+\frac{{{x}^{k}}}{h}\left( {{H}^{T}}\frac{\varphi ({{x}^{k}})}{\phi ({{x}^{k}})}-h \right) xk+1=xk+hxk(HTϕ(xk)φ(xk)h)

对于上述迭代过程直接求解计算量较大,不利于实际的工程应用。由统计学知识可以得到,在一定的条件下,高斯分布和泊松分布是可以相互转化的,因此有两种方法:将高斯分布转化为泊松分布来求解;将泊松分布转化为高斯分布来求解。

对于将高斯分布转化为泊松分布求解来说,将方差为 ε 2 {{\varepsilon }^{2}} ε2的高斯白噪声带入,对于第 i i i个元素可以得到
y i + ε 2 = ( H x + b ) i + ( n i + ε 2 ) {{y}_{i}}+{{\varepsilon }^{2}}={{(Hx+b)}_{i}}+({{n}_{i}}+{{\varepsilon }^{2}}) yi+ε2=(Hx+b)i+(ni+ε2)
则迭代过程可以写作为
x k + 1 = x k [ H T ( y + ε 2 H x k + b + ε 2 ) ] {{x}^{k+1}}={{x}^{k}}\left[ {{H}^{T}}\left( \frac{y+{{\varepsilon }^{2}}}{H{{x}^{k}}+b+{{\varepsilon }^{2}}} \right) \right] xk+1=xk[HT(Hxk+b+ε2y+ε2)]
对于将泊松分布转化为高斯分布来求解来说
φ i ( x ) ϕ i ( x ) = exp ⁡ [ − 1 + 2 ( ( H x + b ) i − y i ) 2 ( ( H x + b ) i + ε 2 ) ] [ 1 + o ( 1 y i ) ] \frac{{{\varphi }_{i}}(x)}{{{\phi }_{i}}(x)}=\exp \left[ -\frac{1+2\left( {{(Hx+b)}_{i}}-{{y}_{i}} \right)}{2\left( {{(Hx+b)}_{i}}+{{\varepsilon }^{2}} \right)} \right]\left[ 1+o(\frac{1}{\sqrt{{{y}_{i}}}}) \right] ϕi(x)φi(x)=exp[2((Hx+b)i+ε2)1+2((Hx+b)iyi)][1+o(yi 1)]

所以迭代的过程可以写作为
x k + 1 = x k H T exp ⁡ [ − 1 + 2 ( ( H x k + b ) − y ) 2 ( ( H x k + b ) + ε 2 ) ] {{x}^{k+1}}={{x}^{k}}{{H}^{T}}\exp \left[ -\frac{1+2\left( (H{{x}^{k}}+b)-y \right)}{2\left( (H{{x}^{k}}+b)+{{\varepsilon }^{2}} \right)} \right] xk+1=xkHTexp[2((Hxk+b)+ε2)1+2((Hxk+b)y)]
对上式中的指数项进行展开可以得到
exp ⁡ [ − 1 + 2 ( ( H x k + b ) − y ) 2 ( ( H x k + b ) + ε 2 ) ] = 1 − 1 + 2 ( ( H x k + b ) − y ) 2 ( ( H x k + b ) + ε 2 ) = y + ε 2 H x k + b + ε 2 \exp \left[ -\frac{1+2\left( (H{{x}^{k}}+b)-y \right)}{2\left( (H{{x}^{k}}+b)+{{\varepsilon }^{2}} \right)} \right]=1-\frac{1+2\left( (H{{x}^{k}}+b)-y \right)}{2\left( (H{{x}^{k}}+b)+{{\varepsilon }^{2}} \right)}=\frac{y+{{\varepsilon }^{2}}}{H{{x}^{k}}+b+{{\varepsilon }^{2}}} exp[2((Hxk+b)+ε2)1+2((Hxk+b)y)]=12((Hxk+b)+ε2)1+2((Hxk+b)y)=Hxk+b+ε2y+ε2

原始场景

在这里插入图片描述

接收场景

在这里插入图片描述

恢复场景

在这里插入图片描述
恢复的场景较接收的场景有了很大的改善。

最大后验概率准则

由前节叙述可知,关于 x x x的最大后验估计为
f = arg ⁡ max ⁡ p ( y ∣ x ) p ( x ) f=\arg \max p(y|x)p(x) f=argmaxp(yx)p(x)
若回波信号中的噪声服从复高斯分布,则对于每个采样点的似然函数可以表示为
p ( y n     ⁣ ⁣ ∣  ⁣ ⁣    x n ) = 1 π σ 2 e − 1 σ 2 ( y n − H x n ) 2 p\left( {{y}_{n}}\ \text{ }\!\!|\!\!\text{ }\ {{x}_{n}} \right)=\frac{1}{\pi {{\sigma }^{2}}}{{e}^{-\frac{1}{{{\sigma }^{2}}}{{\left( {{y}_{n}}-H{{x}_{n}} \right)}^{2}}}} p(yn    xn)=πσ21eσ21(ynHxn)2
式中: σ 2 {{\sigma }^{2}} σ2表示复高斯分布函数的方差,若各回波采样点的噪声独立同分布,则联合似然分布函数为
p ( y ∣ x ) = 1 π σ 2 M N e − 1 σ 2   ∥ y − H x ∥ 2 2 p\left( y|x \right)=\frac{1}{\pi {{\sigma }^{2MN}}}{{e}^{-\frac{1}{{{\sigma }^{2}}}\ \left\| y-Hx \right\|_{2}^{2}}} p(yx)=πσ2MN1eσ21 yHx22
式中: M , N M,N M,N表示回波矩阵的行和列。如果用拉普拉斯分布表示目标的分布,则
p ( x ) = ∏ m = 1 M N 1 2 μ e ( − ∣ x m − b ∣ μ ) p\left( x \right)=\prod\limits_{m=1}^{MN}{\frac{1}{2\mu }{{e}^{\left( -\frac{\left| {{x}_{_{m}}}-b \right|}{\mu } \right)}}} p(x)=m=1MN2μ1e(μxmb)
式中: μ > 0 \mu >0 μ>0是拉普拉斯分布的尺度参数, b = 0 b=0 b=0表示位置参数。那么,最大后验概率分布函数为
f = p ( x ) p ( y ∣ x ) = ∏ m = 1 M N 1 2 μ e ( − ∣ x m ∣ μ ) ⋅ 1 π σ 2 M N e − 1 σ 2   ∥ y − H x ∥   2 2 \begin{aligned} & f=p(x)p(y|x) \\ & =\prod\limits_{m=1}^{MN}{\frac{1}{2\mu }{{e}^{\left( -\frac{\left| {{x}_{_{m}}} \right|}{\mu } \right)}}}\centerdot \frac{1}{\pi {{\sigma }^{2MN}}}{{e}^{-\frac{1}{{{\sigma }^{2}}}\ \left\| y-Hx \right\|\ _{2}^{2}}} \end{aligned} f=p(x)p(yx)=m=1MN2μ1e(μxm)πσ2MN1eσ21 yHx 22
取对数并取反得
H ( x ) = − ln ⁡ f = 1 μ ∥ x ∥ 1 + 1 σ 2 ∥ y − H x ∥ 2 2 − M N ln ⁡ π σ 2 H\left( x \right)=-\ln f=\frac{1}{\mu }{{\left\| x \right\|}_{1}}+\frac{1}{{{\sigma }^{2}}}\left\| y-Hx \right\|_{2}^{2}-MN\ln \pi {{\sigma }^{2}} H(x)=lnf=μ1x1+σ21yHx22MNlnπσ2
式中: 1 / μ 1/\mu 1/μ表示正则化参数,由于 ∥ x ∥ 1 {{\left\| x \right\|}_{1}} x1在零点不可微,引入接近于0的非负实数 ε \varepsilon ε,则上式可以写为
H ( x ) ≈ 1 μ ∑ m = 1 M N ∣ x m ∣ 2 + ε + 1 σ 2 ∥ y − H x ∥ 2 2 − M N ln ⁡ π σ 2 H\left( x \right)\approx \frac{1}{\mu }\sum\limits_{m=1}^{MN}{\sqrt{{{\left| {{x}_{m}} \right|}^{2}}+\varepsilon }}+\frac{1}{{{\sigma }^{2}}}\left\| y-Hx \right\|_{2}^{2}-MN\ln \pi {{\sigma }^{2}} H(x)μ1m=1MNxm2+ε +σ21yHx22MNlnπσ2
对上式进行梯度运算可以得到
∇ ( H ( x ) ) = H H H x − H H y + σ 2 μ W ( x ) x \nabla \left( H\left( x \right) \right)={{H}^{H}}Hx-{{H}^{H}}y+\frac{{{\sigma }^{2}}}{\mu }W\left( x \right)x (H(x))=HHHxHHy+μσ2W(x)x

式中: ( ∙ ) H {{\left( \bullet \right)}^{H}} ()H表示矩阵的共轭, W ( x ) = d i a g { ( ∣ x m ∣ 2 + ε ) − 1 2 } W\left( x \right)=diag\left\{ {{\left( {{\left| {{x}_{m}} \right|}^{2}}+\varepsilon \right)}^{-\frac{1}{2}}} \right\} W(x)=diag{(xm2+ε)21} 为对角矩阵。由于上式是关于 x x x的非线性函数,无法利用 ∇ ( H ( x ) ) = 0 \nabla \left( H\left( x \right) \right)\text{=}0 (H(x))=0直接求解,所以采用迭代的方法对上述求解,先得到其直接解为
x = ( H H H + σ 2 μ W ( x ) ) − 1 H H y x={{\left( {{H}^{H}}H+\frac{{{\sigma }^{2}}}{\mu }W\left( x \right) \right)}^{-1}}{{H}^{H}}y x=(HHH+μσ2W(x))1HHy

采用最小二乘解 x = ( H H H ) − 1 H H y x={{\left( {{H}^{H}}H \right)}^{-1}}{{H}^{H}}y x=(HHH)1HHy作为迭代的初值,则迭代过程可以写作为
x k + 1 = ( H H H + σ 2 μ W ( x k ) ) − 1 H H y {{x}_{k+1}}={{\left( {{H}^{H}}H+\frac{{{\sigma }^{2}}}{\mu }W\left( {{x}_{k}} \right) \right)}^{-1}}{{H}^{H}}y xk+1=(HHH+μσ2W(xk))1HHy

考虑到每次迭代噪声会对最终的结果造成影响,所以将每次迭代的噪声进行更新,即
σ k 2 = 1 M N ∥ y − H x k ∥ 2 2 {{\sigma }_{k}}^{2}=\frac{1}{MN}\left\| y-H{{x}_{k}} \right\|_{2}^{2} σk2=MN1yHxk22
那么,最终的迭代过程为
x k + 1 = ( H H H + σ k 2 μ W ( x k ) ) − 1 H H y {{x}_{k+1}}={{\left( {{H}^{H}}H+\frac{{{\sigma }_{k}}^{2}}{\mu }W\left( {{x}_{k}} \right) \right)}^{-1}}{{H}^{H}}y xk+1=(HHH+μσk2W(xk))1HHy

接收场景

在这里插入图片描述

恢复场景

在这里插入图片描述
可以看出,先验信息的加入能够使得算法取得更好的效果。

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值