python 下numpy包下载地址:http://sourceforge.net/projects/numpy/files/NumPy/
不同平台:可以选择win32或者linux(以.tar.gz为后缀)。
linux下也可以在terminal下:sudo apt-get isntall python-numpy下载
简单介绍:
NumPy数组是一个存放多维数组对象的容器,称为ndarray,且有:
NumPy数组的下标从0开始。
同一个NumPy数组中所有元素的类型必须是相同的。
简单用法:
1、引入、声明
>>> from numpy import * ## 导入包
>>> a=array([1,2,3]) ## 声明1*3矩阵,2*3矩阵,3*2矩阵
>>> b=array([(1,2,3),(4,5,6)])
>>> c=array([(1,2),(3,4),(5,6)])
>>> x=zeros((2,3,4)) ## 声明三维矩阵
创建注意格式:必须中括号括起来,里面有若干个元祖
2、ndarray的重要对象属性:
ndarray.ndim:数组的维数(即数组轴的个数),一维数组(x轴),二维数组(X轴,Y轴)...
ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。
ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
ndarray.dtype:数组中元素的类型,如int32,float
>>> a.ndim
1
>>> b.ndim
2
>>> c.ndim
2
>>> x.dim
3
a是1维数组;b,c都是二维数组,有行与列
>>> a.shape
(3,)
>>> b.shape
(2, 3)
>>> c.shape
(3, 2)
>>> c.shape[0]
3
>>> x.shape
(2,3,4)
b 2行3列,c3行2列
>>> a.size
3
>>> b.size
6
>>> a.dtype
atype('int32')
3、索引访问
>>> b
array([[1, 2, 3],
[4, 5, 6]] )
>>> b[0,0], b[1,1],b[1,2]
(1, 5, 6) ##可以看到下标从0开始
y=b[:,1] ##b的第二列
>>> y
array([2, 5])
>>> z=b[1,:] ##b的第二行
>>> z
array([4, 5, 6])
4、tile函数:重复某一数组
>>> a=[0,1,2]
>>> b=tile(a,(3,2)) ##a重复成3行,每行重复两遍
>>> a
[0, 1, 2]
>>> b
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
5、sum函数:针对于矩阵的行与列
>>> b
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> c=b.sum(axis=1) ##行相加
>>> d=b.sum(axis=0) ##列相加
>>> c
array([6, 6, 6])
>>> d
array([0, 3, 6, 0, 3, 6])
详细见官方doc:http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#constructing-arrays