N个虫洞,M条单向跃迁路径。从一个虫洞沿跃迁路径到另一个虫洞需要消耗一定量的燃料和1单位时间。虫洞有白洞和黑洞之分。设一条跃迁路径两端的虫洞质量差为delta。
1.从白洞跃迁到黑洞,消耗的燃料值减少delta,若该条路径消耗的燃料值变为负数的话,取为0。
2.从黑洞跃迁到白洞,消耗的燃料值增加delta。
3.路径两端均为黑洞或白洞,消耗的燃料值不变化。
作为压轴题,自然不会是如此简单的最短路问题,所以每过1单位时间黑洞变为白洞,白洞变为黑洞。在飞行过程中,可以选择在一个虫洞停留1个单位时间,如果当前为白洞,则不消耗燃料,否则消耗s[i]的燃料。现在请你求出从虫洞1到N最少的燃料消耗,保证一定存在1到N的路线。
从题目可以得知这是一条最短路的问题
大致可以概括为三个操作
- 两个类型一样的点之间进行操作,代价就是边权
- 两个不同类型的点之间进行操作,代价可能是边权±点质量差
- 自己和自己操作,代价为一个s[i]或者0
并且每个点的类型都在0/1之间不断变化(每个时间单位变化一次)
30pts 暴搜
暴枚每一种操作,找到终点就打擂台
#include<bits/stdc++.h>
#define maxn 5500
using namespace std;
inline int read()
{
int res=0,f=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){
res=(res<<1)+(res<<3)+(ch&15);ch=getchar();}
return res*f;
}
int n,m,w[maxn],a[maxn],s[maxn];
int edge[maxn][maxn];
int vis[maxn];
int ans=1e7;
int num[maxn];
inline bool bai (int x,int t)
{
if((t+a[x])%2)return 0;
return 1;
}
inline bool bla(int x,int t)
{
if((t+a[x])%2)return 1;
return 0;
}
inline void dfs(int x,int time,int val,int f)
{
num[time]=x;
if(x==n)
{
ans=min(ans,val);
return;
}
for