最长公共上升子序列

算法
(DP,线性DP,前缀和) O(n2)O(n2)
这道题目是AcWing 895. 最长上升子序列和AcWing 897. 最长公共子序列的结合版,在状态表示和状态计算上都是融合了这两道题目的方法。

状态表示:

f[i][j]代表所有a[1 ~ i]和b[1 ~ j]中以b[j]结尾的公共上升子序列的集合;
f[i][j]的值等于该集合的子序列中长度的最大值;
状态计算(对应集合划分):

首先依据公共子序列中是否包含 a [ i ] a[i] a[i],将 f [ i ] [ j ] f[i][j] f[i][j]所代表的集合划分成两个不重不漏的子集:

不包含 a [ i ] 的 子 集 , 最 大 值 是 f [ i − 1 ] [ j ] a[i]的子集,最大值是f[i - 1][j] a[i]f[i1][j]
包含a[i]的子集,将这个子集继续划分,依据是子序列的倒数第二个元素在b[]中是哪个数:
子序列只包含b[j]一个数,长度是1;
子序列的倒数第二个数是 b [ 1 ] 的 集 合 , 最 大 长 度 是 f [ i − 1 ] [ 1 ] + 1 b[1]的集合,最大长度是f[i - 1][1] + 1 b[1]f[i1][1]+1

子序列的倒数第二个数是 b [ j − 1 ] 的 集 合 , 最 大 长 度 是 f [ i − 1 ] [ j − 1 ] + 1 b[j - 1]的集合,最大长度是f[i - 1][j - 1] + 1 b[j1]f[i1][j1]+1
如果直接按上述思路实现,需要三重循环

#include<bits/stdc++.h>
#define I inline
#define RI register int 
#define N 5500
using namespace std;
I int read()
{
	RI res=0,f=1;char ch=getchar();
	while(!isdigit(ch))if(ch=='-')f=-f,ch=getchar();else ch=getchar();
	while(isdigit(ch))res=(res<<1)+(res<<3)+(ch&15),ch=getchar();
	return res*f;
}
int f[N][N],n,a[N],b[N],num[N][N];
int main()
{
	n=read();for(RI i=1;i<=n;i++)a[i]=read();
	for(RI i=1;i<=n;i++)b[i]=read();
	for(RI i=1;i<=n;i++)
	{
		for(RI j=1;j<=n;j++)
		{
	      f[i][j]=f[i-1][j];
	      if(a[i]==b[j])
		  {
	      	int Max=1;for(RI k=1;k<j;k++)
			if(a[i]>b[k])Max=max(Max,f[i-1][k]+1);
			f[i][j]=max(f[i][j],Max);
		  }
		}
	}
    int res = 0;
    for (int i = 1; i <= n; i ++ ) res = max(res, f[n][i]);
    printf("%d\n", res);
	return 0;
}

然后我们发现每次循环求得的maxv是满足 a [ i ] > b [ k ] 的 f [ i − 1 ] [ k ] + 1 a[i] > b[k]的f[i - 1][k] + 1 a[i]>b[k]f[i1][k]+1的前缀最大值。
因此可以直接将maxv提到第一层循环外面,减少重复计算,此时只剩下两重循环。

最终答案枚举子序列结尾取最大值即可。

时间复杂度
代码中一共两重循环,因此时间复杂度是 O ( n 2 ) O(n^2) O(n2)

#include<bits/stdc++.h>
#define I inline
#define RI register int 
#define N 3500
using namespace std;
I int read()
{
	RI res=0,f=1;char ch=getchar();
	while(!isdigit(ch))if(ch=='-')f=-f,ch=getchar();else ch=getchar();
	while(isdigit(ch))res=(res<<1)+(res<<3)+(ch&15),ch=getchar();
	return res*f;
}
int f[N][N],n,a[N],b[N];
int main()
{
	n=read();for(RI i=1;i<=n;i++)a[i]=read();
	for(RI i=1;i<=n;i++)b[i]=read();int Max=1;
	for(RI i=1;i<=n;i++)
	{
		Max=1;
		for(RI j=1;j<=n;j++)
		{
	      f[i][j]=f[i-1][j];
	      if(a[i]==b[j])f[i][j]=max(f[i][j],Max);
		  if(a[i]>b[j])Max=max(Max,f[i-1][j]+1);
		}
	}
    int res=0;for(int i=1;i<=n;i++)res=max(res,f[n][i]);
    printf("%d\n", res);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值