Fibonacci数性质

常用Fibonacci数性质

参考

0.

F n − 1 + F n − 2 = F n Fn−1+Fn−2=Fn Fn1+Fn2=Fn F 0 = 1 , F 1 = 1 F0=1,F1=1 F0=1,F1=1
上述式子为定义式

1.

F ( 0 ) + F ( 1 ) + … + F ( n ) = F ( n + 2 ) − 1 F(0) + F(1)+ … + F(n) = F(n+2) − 1 F(0)+F(1)++F(n)=F(n+2)1

证明:

F 0 + F 1 = F 2 F0+F1=F2 F0+F1=F2

F 1 + F 2 = F 3 F1+F2=F3 F1+F2=F3
F 2 + F 3 = F 4 F2+F3=F4 F2+F3=F4

F n + F n + 1 = F n + 2 Fn+Fn+1=Fn+2 Fn+Fn+1=Fn+2

F 0 + 2 F 1 + 2 F 2 + … + 2 F n + F n + 1 = F 1 + F 2 + … + F n + 2 F0+2F1+2F2+…+2Fn+Fn+1=F1+F2+…+Fn+2 F0+2F1+2F2++2Fn+Fn+1=F1+F2++Fn+2

F 0 + F 1 + F 2 + … + F n + F n + 1 = F n + 2 − F 1 = F n + 2 − 1 F0+F1+F2+…+Fn+Fn+1=Fn+2−F1=Fn+2−1 F0+F1+F2++Fn+Fn+1=Fn+2F1=Fn+21

2. F ( 1 ) + F ( 3 ) + … + F ( 2 n − 1 ) = F ( 2 n ) F(1) + F(3) + … + F(2n−1) = F(2n) F(1)+F(3)++F(2n1)=F(2n)

证明:

F 1 = F 0 + 1 F1=F0+1 F1=F0+1

F 3 = F 2 + F 1 F3=F2+F1 F3=F2+F1

⋮ ⋮

F 2 n − 1 = F 2 n − 2 + F 2 n − 3 F2n−1=F2n−2+F2n−3 F2n1=F2n2+F2n3

F 1 + F 3 + … + F 2 n − 1 = 1 + F 0 + F 1 + F 2 + … + F 2 n − 3 + F 2 n − 2 = 1 + F 2 n − 1 = F 2 n F1+F3+…+F2n−1=1+F0+F1+F2+…+F2n−3+F2n−2=1+F2n−1=F2n F1+F3++F2n1=1+F0+F1+F2++F2n3+F2n2=1+F2n1=F2n

3.

F ( 0 ) + F ( 2 ) + … + F ( 2 n ) = F ( 2 n + 1 ) − 1 F(0) + F(2) + … + F(2n) = F(2n+1) − 1 F(0)+F(2)++F(2n)=F(2n+1)1
证明:

F 0 + F 1 + … + F n = F n + 2 − 1 和 F 1 + F 3 + … + F 2 n − 1 = F 2 n F0+F1+…+Fn=Fn+2−1 和 F1+F3+…+F2n−1=F2n F0+F1++Fn=Fn+21F1+F3++F2n1=F2n

F 0 + F 2 … + F 2 n = F 2 n + 2 − F 2 n − 1 = F 2 n + 1 − 1 F0+F2…+F2n=F2n+2−F2n−1=F2n+1−1 F0+F2+F2n=F2n+2F2n1=F2n+11

4.

F ( 0 ) 2 + F ( 1 ) 2 + F ( 2 ) 2 + … + F ( n ) 2 = F ( n ) F ( n + 1 ) F(0)^2 + F(1)^2 + F(2)^2 + … + F(n)^2 = F(n)F(n+1) F(0)2+F(1)2+F(2)2++F(n)2=F(n)F(n+1)

证明:

F 20 = F 0 ∗ F 1 F20=F0∗F1 F20=F0F1 ,假设有 F 20 + F 21 + F 22 + … + F 2 n − 1 = F n − 1 F n F20+F21+F22+…+F2n−1=Fn−1Fn F20+F21+F22++F2n1=Fn1Fn

那么 F 20 + F 21 + … + F 2 n − 1 + F 2 n = F n − 1 F n + F 2 n = F n F n + 1 F20+F21+…+F2n−1+F2n=Fn−1Fn+F2n=FnFn+1 F20+F21++F2n1+F2n=Fn1Fn+F2n=FnFn+1

5 .

从第二项开始,每个偶数项的平方都比前后两项之积多1,每个奇数项的平方都比前后两项之积少1。

6

. F ( n + 2 ) + F ( n − 2 ) = 3 × F ( n ) F(n+2) + F(n−2) = 3 × F(n) F(n+2)+F(n2)=3×F(n)
证明:

F n + 2 = F n + 1 + F n = ( F n + F n − 1 ) + F n = ( F n + ( F n − F n − 2 ) ) + F n = 3 × F n − F n − 2 Fn+2=Fn+1+Fn=(Fn+Fn−1)+Fn=(Fn+(Fn−Fn−2))+Fn=3×Fn−Fn−2 Fn+2=Fn+1+Fn=(Fn+Fn1)+Fn=(Fn+(FnFn2))+Fn=3×FnFn2

7.

g c d ( F ( n + 1 ) , F ( n ) ) = 1 gcd( F(n+1) , F(n) ) = 1 gcd(F(n+1),F(n))=1
证明:
根据辗转相减法则
g c d ( F n + 1 , F n ) = g c d ( F n + 1 − F n , F n ) = g c d ( F n , F n − 1 ) = g c d ( F 2 , F 1 ) = 1 gcd(Fn+1,Fn)=gcd(Fn+1−Fn,Fn)=gcd(Fn,Fn−1)=gcd(F2,F1)=1 gcd(Fn+1,Fn)=gcd(Fn+1Fn,Fn)=gcd(Fn,Fn1)=gcd(F2,F1)=1

8.

F ( m + n ) = F ( m − 1 ) F ( n ) + F ( m ) F ( n + 1 ) F(m+n) = F(m−1)F(n) + F(m)F(n+1) F(m+n)=F(m1)F(n)+F(m)F(n+1)
F n Fn Fn看做斐波那契的第1项,那么到第 F n + m Fn+m Fn+m项时,系数为 F m − 1 Fm−1 Fm1

F n + 1 Fn+1 Fn+1看做斐波那契的第2项,那么到第 F n + m Fn+m Fn+m项时,系数为 F m Fm Fm

9.

g c d ( F ( n + m ) , F ( n ) ) = g c d ( F ( n ) , F ( m ) ) gcd( F(n+m) , F(n) ) = gcd( F(n) , F(m) ) gcd(F(n+m),F(n))=gcd(F(n),F(m))
证明:
g c d ( F n + m , F n ) = g c d ( F n + 1 F m + F n F m − 1 , F n ) = g c d ( F n + 1 F m , F n ) = g c d ( F m , F n ) gcd(Fn+m,Fn)=gcd(Fn+1Fm+FnFm−1,Fn)=gcd(Fn+1Fm,Fn)=gcd(Fm,Fn) gcd(Fn+m,Fn)=gcd(Fn+1Fm+FnFm1,Fn)=gcd(Fn+1Fm,Fn)=gcd(Fm,Fn)

10.

g c d ( F ( n ) , F ( m ) ) = F ( g c d ( n , m ) ) gcd( F(n) , F(m) ) = F( gcd(n,m) ) gcd(F(n),F(m))=F(gcd(n,m))
由8式得,Fibonacci数满足下标的辗转相减

g c d ( F n , F m ) = g c d ( F g c d ( n , m ) , F g c d ( n , m ) ) = F g c d ( n , m ) gcd(Fn,Fm)=gcd(Fgcd(n,m),Fgcd(n,m))=Fgcd(n,m) gcd(Fn,Fm)=gcd(Fgcd(n,m)Fgcd(n,m))=Fgcd(n,m)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值