斐波那契数列的一些性质

斐波那契数列的一些性质

一、斐波那契数列

又称兔子数列。一开始有一对初生兔子。每队初生兔子到第三个月又可以繁殖一对兔子。问第n个月有多少对兔子?
f ( n ) f(n) f(n)表示第 n n n个月的兔子数量。显然有:
f ( 1 ) = 1 , f ( 2 ) = 1 , f ( 3 ) = 2 , f ( 4 ) = 3 , f ( 5 ) = 5 , f ( 6 ) = 8 , … , f(1)=1,f(2)=1,f(3)=2,f(4)=3,f(5)=5,f(6)=8,\dots, f(1)=1,f(2)=1,f(3)=2,f(4)=3,f(5)=5,f(6)=8,,
观察规律,可以发现 f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n-2) f(n)=f(n1)+f(n2).
仔细分析,也能得出这个规律。
n n n个月的兔子可以分为非新生兔子和新生兔子。非新生兔子一定是 f ( n − 1 ) f(n-1) f(n1),而新生兔子就是第 n − 2 n-2 n2个月的兔子生的,其数量必为 f ( n − 2 ) f(n-2) f(n2),所以, f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n-2) f(n)=f(n1)+f(n2).
这个数列就是斐波那契数列。

二、一些性质:

1. 2 n / 2 ≤ f ( n ) ≤ 2 n 2^{n/2} \leq f(n) \leq 2^n 2n/2f(n)2n
证明:

采用数学归纳法
∵ f ( 1 ) = 1 \because f(1) =1 f(1)=1, 当 k = 1 k=1 k=1时满足条件。
k = ( n − 1 ) k=(n-1) k=(n1)时满足条件,即 2 ( n − 1 ) / 2 ≤ f ( n − 1 ) ≤ 2 n − 1 , 2 ( n / 2 ) − 1 ≤ f ( n − 2 ) ≤ 2 n − 2 2^{(n-1)/2}\leq f(n-1) \leq 2^{n-1}, 2^{(n/2)-1} \leq f(n-2) \leq 2^{n-2} 2(n1)/2f(n1)2n1,2(n/2)1f(n2)2n2
∵ f ( n ) = f ( n − 1 ) + f ( n − 2 ) , f ( n − 2 ) ≤ f ( n − 1 ) ≤ f ( n ) \because f(n)=f(n-1)+f(n-2),f(n-2) \leq f(n-1) \leq f(n) f(n)=f(n1)+f(n2),f(n2)f(n1)f(n)

∴ 2 n / 2 ≤ 2 ∗ f ( n − 2 ) ≤ f ( n ) ≤ 2 ∗ f ( n − 1 ) ≤ 2 n \therefore 2^{n/2} \leq 2*f(n-2) \leq f(n) \leq 2*f(n-1) \leq2^n 2n/22f(n2)f(n)2f(n1)2n

2. g c d ( f ( n ) , f ( n − 1 ) ) = 1 gcd(f(n),f(n-1)) = 1 gcd(f(n),f(n1))=1
证明:

∵ f ( n ) % f ( n − 1 ) = f ( n − 2 ) \because f(n)\%f(n-1)=f(n-2) f(n)%f(n1)=f(n2)$
由辗转相除法可知:

g c d ( f ( n − 1 ) , f ( n ) ) = g c d ( f ( n − 2 ) , f ( n − 1 ) ) gcd(f(n-1),f(n))=gcd(f(n-2),f(n-1)) gcd(f(n1),f(n))=gcd(f(n2),f(n1))
∴ g c d ( f ( n − 1 ) , f ( n ) ) = g c d ( f ( 1 ) , f ( 2 ) ) = 1 \therefore gcd(f(n-1),f(n))=gcd(f(1),f(2))= 1 gcd(f(n1),f(n))=gcd(f(1),f(2))=1

3. g c d ( f ( n ) , f ( m ) ) = f ( g c d ( n , m ) ) gcd(f(n),f(m))=f(gcd(n,m)) gcd(f(n),f(m))=f(gcd(n,m))
证明:

∵ f ( n ) = f ( n − 1 ) + f ( n − 2 ) = 2 f ( n − 2 ) + f ( n − 3 ) = 3 f ( n − 3 ) + 2 f ( n − 4 ) = ⋯ = f ( m + 1 ) f ( n − m ) + f ( m ) f ( n − m − 1 ) \because f(n)=f(n-1)+f(n-2)=2f(n-2)+f(n-3)=3f(n-3)+2f(n-4)=\dots =f(m+1)f(n-m)+f(m)f(n-m-1) f(n)=f(n1)+f(n2)=2f(n2)+f(n3)=3f(n3)+2f(n4)==f(m+1)f(nm)+f(m)f(nm1)
∴ g c d ( f ( n ) , f ( m ) ) = g c d ( f ( m + 1 ) f ( n − m ) + f ( m ) f ( n − m − 1 ) , f ( m ) ) = g c d ( f ( m + 1 ) f ( n − m ) , f ( m ) ) \therefore gcd(f(n),f(m))=gcd(f(m+1)f(n-m)+f(m)f(n-m-1),f(m))=gcd(f(m+1)f(n-m),f(m)) gcd(f(n),f(m))=gcd(f(m+1)f(nm)+f(m)f(nm1),f(m))=gcd(f(m+1)f(nm),f(m))
又根据性质2,有 g c d ( f ( m ) , f ( m − 1 ) ) = 1 gcd(f(m),f(m-1)) =1 gcd(f(m),f(m1))=1
g c d ( f ( m + 1 ) f ( n − m ) , f ( m ) ) = g c d ( f ( n − m ) , f ( m ) ) gcd(f(m+1)f(n-m),f(m))=gcd(f(n-m),f(m)) gcd(f(m+1)f(nm),f(m))=gcd(f(nm),f(m))
最终, g c d ( f ( n ) , f ( m ) ) = f ( g c d ( n , m ) ) gcd(f(n),f(m))=f(gcd(n,m)) gcd(f(n),f(m))=f(gcd(n,m))

4. n ∣ m    ⟺    f ( n ) ∣ f ( m ) n | m \iff f(n)|f(m) nmf(n)f(m)
证明:

根据性质3, g c d ( f ( n ) , f ( m ) ) = f ( g c d ( n , m ) ) gcd(f(n),f(m)) = f(gcd(n,m)) gcd(f(n),f(m))=f(gcd(n,m)):
n ∣ m    ⟺    g c d ( n , m ) = n    ⟺    g c d ( f ( n ) , f ( m ) ) = f ( n )    ⟺    f ( n ) ∣ f ( m ) n|m \iff gcd(n,m)=n \iff gcd(f(n),f(m))=f(n)\iff f(n)|f(m) nmgcd(n,m)=ngcd(f(n),f(m))=f(n)f(n)f(m)

5.一些恒等式
  • 证明 f n ∗ f n − 1 = ∑ i n − 1 f i 2 f_n*f_{n-1}=\sum_{i}^{n-1}f_i^2 fnfn1=in1fi2
证明:

f n = f n − 1 + f n − 2 f_n=f_{n-1}+f_{n-2} fn=fn1+fn2展开,即可得证。

  • 证明 f 2 n = ∑ i = 1 n f 2 i − 1 f_{2n}=\sum_{i=1}^n f_{2i-1} f2n=i=1nf2i1
证明:

f 2 n = f 2 n − 1 + f 2 n − 2 f_{2n}=f_{2n-1}+f_{2n-2} f2n=f2n1+f2n2展开,即可得证。

  • 证明 f 2 n + 1 = ∑ i = 1 n f 2 i + 1 f_{2n+1}=\sum_{i=1}^{n}f_{2i}+1 f2n+1=i=1nf2i+1
证明:

f 2 n + 1 = f 2 n + f 2 n − 1 f_{2n+1}=f_{2n}+f_{2n-1} f2n+1=f2n+f2n1展开,即可得证。

  • 证明 f n 2 + ( − 1 ) n = f n + 1 ∗ f n − 1 f_n^2+(-1)^n=f_{n+1}*f_{n-1} fn2+(1)n=fn+1fn1
证明:

f n + 1 ∗ f n − 1 = ( f n + f n − 1 ) ∗ ( f n − f n − 2 ) = f n 2 + f n − 3 f n − f n − 1 f n − 2 = f n 2 + ( f n − 3 ) ∗ ( f n − 1 + f n − 2 ) − f n − 1 ( f n − 3 + f n − 4 ) = f n 2 + f n − 3 ∗ f n − 2 − f n − 1 ∗ f n − 4 = f n 2 + ( − 1 ) k ( f n − k f n − k − 3 − f n − k − 1 f n − k − 2 ) f_{n+1}*f_{n-1}=(f_{n}+f_{n-1})*(f_n-f_{n-2})=f_n^2+f_{n-3}f_n-f_{n-1}f_{n-2}=f_n^2+(f_{n-3})\\*(f_{n-1}+f_{n-2})-f_{n-1}(f_{n-3}+f_{n-4})=f_n^2+f_{n-3}*f_{n-2}-f_{n-1}*f_{n-4}=f_n^2+(-1)^k(f_{n-k}f_{n-k-3}-f_{n-k-1}f_{n-k-2}) fn+1fn1=(fn+fn1)(fnfn2)=fn2+fn3fnfn1fn2=fn2+(fn3)(fn1+fn2)fn1(fn3+fn4)=fn2+fn3fn2fn1fn4=fn2+(1)k(fnkfnk3fnk1fnk2)
k = n − 4 k=n-4 k=n4时, f n − k = 3 , f n − k − 3 = 1 , f n − k − 1 = 2 , f n − k − 2 = 1 , ∴ f n + 1 ∗ f n − 1 = f n 2 + ( − 1 ) n − 4 = f n 2 + ( − 1 ) n f_{n-k}=3,f_{n-k-3}=1,f_{n-k-1}=2,f_{n-k-2}=1,\therefore f_{n+1}*f_{n-1}=f_n^2+(-1)^{n-4}=f_n^2+(-1)^n fnk=3,fnk3=1,fnk1=2,fnk2=1,fn+1fn1=fn2+(1)n4=fn2+(1)n.

  • 证明 f n = ∑ i = m n − 2 + f m + 1 f_n=\sum_{i=m}^{n-2}+f_{m+1} fn=i=mn2+fm+1
证明:

∵ f ( n ) = f ( n − 1 ) + f ( n − 2 ) = f ( n − 2 ) + f ( n − 3 ) + f ( n − 2 ) = f ( n − 2 ) + f ( n − 3 ) + f ( n − 4 ) + f ( n − 3 ) + f ( n − 2 ) + f ( n − 3 ) + f ( n − 4 ) + f ( n − 5 ) + f ( n − 4 ) = ⋯ = ∑ i = m n − 2 f ( i ) + f ( m + 1 ) \because f(n) = f(n-1) + f(n-2) = f(n-2)+f(n-3)+f(n-2)=f(n-2)+f(n-3)+f(n-4)+f(n-3)+f(n-2)+f(n-3)+f(n-4)+f(n-5)+f(n-4)=\dots= \sum_{i=m}^{n-2}f(i)+f(m+1) f(n)=f(n1)+f(n2)=f(n2)+f(n3)+f(n2)=f(n2)+f(n3)+f(n4)+f(n3)+f(n2)+f(n3)+f(n4)+f(n5)+f(n4)==i=mn2f(i)+f(m+1)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值