CentOS 7.8 安装 NVIDIA 9.2 k20c cuda toolkit11.3 pytorch-gpu 踩坑教程

CentOS 7.8 安装 NVIDIA 9.2 k20c cuda toolkit11.3 pytorch-gpu 踩坑教程

前期环境准备
yum -y install net-tools
yum -y install vim wget
yum -y install lrzsz
yum install epel-release
yum install dnf
yum install gcc kernel-devel kernel-headers  -y
yum install -y elfutils-libelf-devel
yum -y install gcc kernel-devel "kernel-devel-uname-r == $(uname -r)" dkms
修改各个配置文件
配置文件如果不存在,直接新建
vim /usr/lib/modprobe.d/dist-blacklist.conf
blacklist nouveau
options nouveau modeset=0

vim /etc/modprobe.d/dccp-blacklist.conf
blacklist dccp
blacklist dccp_diag
blacklist dccp_ipv4
blacklist dccp_ipv6
blacklist nouveau
blacklist nvidiafb
options nouveau modeset=0

vim /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
blacklist nvidiafb

vim /etc/modprobe.d/blacklist.conf
blacklist nouveau
options nouveau modeset=0
blacklist nvidiafb
blacklist vga16fb
blacklist nouveau
blacklist rivafb
blacklist rivatv

vim /lib/modprobe.d/dist-blacklist.conf
blacklist nouveau
options nouveau modeset=0
备份initramfs:
mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
重新建立initramfs:
dracut -v /boot/initramfs-$(uname -r).img $(uname -r)
启动服务
systemctl set-default multi-user.target
刷新文本,重启服务器
init 3 
reboot
## 重启后,检查nouveau driver确保没有被加载! 为空就对了
lsmod | grep nouveau  
安装 NVIDIA
./NVIDIA-Linux-x86_64-396.82.run --kernel-source-path=/usr/src/kernels/3.10.0-1160.76.1.el7.x86_64 --no-drm
下载地址
https://www.nvidia.com/Download/index.aspx?lang=cn
安装 CUDA
https://developer.nvidia.com/cuda-92-download-archive?target_os=Linux&target_arch=x86_64&target_distro=CentOS&target_version=7&target_type=runfilelocal
chmod 777 cuda_9.2.148_396.37_linux.run 
./cuda_9.2.148_396.37_linux.ru
安装cudnn
https://developer.nvidia.com/rdp/cudnn-archive
tar -xf cudnn-9.2-linux-x64-v7.6.4.38.tgz
cp -rp  ../cuda/include/cudnn.h /usr/local/cuda-9.2/include/
cp -rp ../cuda/lib64/libcudnn* /usr/local/cuda-9.2/lib64/
chmod  a+r /usr/local/cuda-9.2/include/cudnn.h /usr/local/cuda-9.2/lib64/libcudnn*
cat /usr/local/cuda-9.2/include/cudnn.h | grep CUDNN_MAJOR -A 2
source /etc/profile
nvcc -V
安装Anaconda
下载位置:https://pan.baidu.com/s/1szOpG1gkpJcGjU7MJYYmgQ
密码:8888
chmod 755 Anaconda3-2019.10-Linux-x86_64.sh 
sha256sum Anaconda3-2019.10-Linux-x86_64.sh
bash Anaconda3-2019.10-Linux-x86_64.sh
一共需要输入3次
第一次直接回车;
第二次输入yes;
第三次直接回车;
第四次输入yes;
之后等待即可 执行有点慢
more ~/.bashrc
### 最后的内容如下:
# >>> conda initialize >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$('/root/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
if [ $? -eq 0 ]; then
eval "$__conda_setup"
else
if [ -f "/root/anaconda3/etc/profile.d/conda.sh" ]; then
    . "/root/anaconda3/etc/profile.d/conda.sh"
else
    export PATH="/root/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda initialize <<<
### 刷新
source ~/.bashrc
安装 PyTorch
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

在这里插入图片描述

最后安装完成后,在CMD python中测试是否有GPU,
我们需要运行简单的样例代码测试,例如打印出随机生成的张量矩阵,以及gpu是否可以使用。
先在命令行输入python,进入python的解释器,依次输入以下命令,每输入一句回车
代码块为下:
import torch
x = torch.rand(5,3)	
print(x)
输出的内容应该类似于以下:
tensor([[0.8224, 0.1163, 0.6721],
[0.1477, 0.6822, 0.5136],
[0.3805, 0.0996, 0.2719],
[0.3358, 0.5633, 0.6164],
[0.5203, 0.4628, 0.6428]])

再输入

>>> torch.cuda.is_available()
True

恭喜安装成功!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值