ubuntu18.04配置CUDA-11.3、cuDNN、PyTorch

ubuntu18.04配置CUDA-11.3、cuDNN、PyTorch

0 准备工作

硬件:RTX 3070, ubuntu18.04

0.1 查看显卡驱动

查看显卡驱动各版本以及支持的最大CUDA版本,显卡驱动版本为495.46,最大支持CUDA版本为11.5

在这里插入图片描述

0.2 查看GPU驱动与CUDA对应关系

官网:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
表2. CUDA工具包和CUDA小版本兼容性所需的最低驱动版本
在这里插入图片描述

表3. CUDA工具包和对应的驱动程序版本
在这里插入图片描述在这里插入图片描述

0.3 CUDA与PyTorch的版本对应关系

参考:https://www.cnblogs.com/zhoujiayingvana/p/15827369.html

在这里插入图片描述

0.4 选择CUDA版本

结合0.2和0.3 选择CUDA版本为11.3

0.5 下载CUDA

进入英伟达的cuda版本列表:https://developer.nvidia.com/cuda-toolkit-archive

在这里插入图片描述

进入11.3版本的列表,依次选择箭头位置,下方会出现下载与安装命令

在这里插入图片描述

运行下载命令进行下载:wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
注:我这里使用命令将其下载到我的T7外接移动硬盘时报了个错误,导致下载进度没在99%处丢失(不知道是不是外接移动硬盘的问题):

在这里插入图片描述

我这里直接点击链接,在浏览器下载;使用手机流量可能会比校园网快很多

在这里插入图片描述

0.6 下载cuDNN

进入网页进行下载,需要注册或登录
登录进去后,选择Download cuDNN v8.6.0 (October 3rd, 2022), for CUDA 11.x(0.4步选择安装CUDA 11.3)

在这里插入图片描述

接着选Local Installer for Linux x86_64 (Tar),点击即可下载
在这里插入图片描述在这里插入图片描述

1 安装CUDA和cuDNN

1.1 安装CUDA

给.run文件以可执行权限:chmod +x cuda_11.3.0_465.19.01_linux.run
运行安装命令:sudo sh cuda_11.3.0_465.19.01_linux.run
(注:这个命令后可能需要等一会)
选continue:

在这里插入图片描述

其他安装步骤依次为:accept使用enter勾选掉Driver选择install
我之前写的流程此处比较详细:https://blog.csdn.net/BIT_HXZ/article/details/123374962 的6.3.2 安装及选项

如果弹出A symlink already exists at /usr/local/cuda. Update to this installation? ,说明以前安装过cuda,询问你本次安装是否需要替换掉之前安装cuda产生的链接。之前安装的cuda是11.0,不太想用了,于是我这里选yes(注:yes后也需要等待安装)
在这里插入图片描述
在这里插入图片描述

安装成功,位置如下:
在这里插入图片描述

1.2 测试CUDA

cd /usr/local/cuda/samples/1_Utilities/deviceQuery #由自己电脑目录决定
sudo make
sudo ./deviceQuery

在这里插入图片描述
在这里插入图片描述

1.3 配置cuda到~/.bashrc

export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-11.3
export PATH=/usr/local/cuda-11.3/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH

在这里插入图片描述

1.4 配置cuDNN

解压下载的文件并进入:

在这里插入图片描述

参考官网指导将对应文复制后赋予权限:

在这里插入图片描述

我这里将文件复制到自己安装的目录/usr/local/cuda-11.3中,而不是官网参考的/usr/local/cuda,这是因为上面执行了1.3 配置cuda到~/.bashrc步骤

sudo cp ./include/cudnn*.h /usr/local/cuda-11.3/include
sudo cp ./lib/libcudnn* /usr/local/cuda-11.3/lib64
 
sudo chmod a+r /usr/local/cuda-11.3/include/cudnn*.h 
sudo chmod a+r /usr/local/cuda-11.3/lib64/libcudnn*

在这里插入图片描述

检查是否安装成功:nvcc -V

在这里插入图片描述

2 安装pytorch1.12.0

进入pytorch官网页面:https://pytorch.org/get-started/previous-versions/
选一个不是很新,也不是很旧的版本,这里选了1.12.0

在这里插入图片描述

在python环境中输入:conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch

成功运行网络:
在这里插入图片描述

3 参考链接

非root用户安装cuda与cudnn
ubuntu系统(八):ubuntu18.04双系统安装+ros安装+各种软件安装+深度学习环境配置全家桶
PyTorch和CUDA版本对应关系
Ubuntu18.04安装cuda11.3

### CUDA 11.3PyTorch的兼容性及安装配置 在讨论CUDA 11.3PyTorch的兼容性和安装配置时,需注意以下几个方面: #### 1. **PyTorch内置CUDA工具包** PyTorch安装包通常会自带特定版本CUDA运行时库。这意味着即使系统已安装其他版本CUDA(如CUDA 11.4),当安装支持CUDA 11.3PyTorch版本时,它仍会携带适合该版本CUDA工具包[^1]。因此,无需单独安装CUDA Toolkit来实现GPU加速功能。 #### 2. **无需额外安装CUDA Toolkit** 对于仅使用PyTorch的情况,不需要手动安装CUDA Toolkit。这是因为PyTorch已经包含了必要的CUDA运行时库以支持GPU计算[^2]。然而,如果需要开发或调试自定义的CUDA扩展,则可能需要安装完整的CUDA Toolkit。 #### 3. **Python、CUDAPyTorch版本间的依赖关系** 为了确保顺利安装并避免版本冲突,建议仔细核对所使用的Python、CUDA以及PyTorch版本之间的兼容性。例如,在某些情况下,Python 3.10及以上版本可能会与较旧的PyTorch版本不完全兼容[^3]。因此推荐先确认目标环境的具体需求后再进行操作。 #### 4. **通过Conda创建独立环境并设置指定版本** 可以利用`conda`命令轻松构建一个带有所需软件栈的新环境。以下是针对CUDA 11.3及相关组件的一个典型例子: ```bash # 创建名为cu113且基于Python 3.8的新环境 conda create -n cu113 python=3.8 # 激活新建好的环境 conda activate cu113 # 安装对应版本CUDAToolKit, CUDNN 及 NVCC 编译器 conda install cudatoolkit=11.3.1 conda install cudnn=8.2.1 conda install -c nvidia cuda-nvcc==11.3.58 ``` 上述脚本能够帮助用户快速搭建起适用于深度学习框架训练模型的基础架构[^4]。 #### 5. **从官方渠道获取最新指导文档** 访问[PyTorch官方网站](https://pytorch.org/)上的安装指南页面可以帮助找到最匹配当前硬件条件下的最佳实践方案。按照提示选择合适的选项组合后复制给出的相关指令至终端执行即可完成部署工作[^5]。验证过程如下所示: ```python import torch print(torch.cuda.is_available()) ``` #### 总结 综上所述,只要遵循正确的流程步骤,并合理规划好各个组成部分间的关系链路,就能顺利完成包含CUDA 11.3在内的整个生态系统的组装任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值